数域有限扩展的Ostrowski商

Pub Date : 2021-10-31 DOI:10.2140/pjm.2022.321.415
Ehsan Shahoseini, A. Rajaei, A. Maarefparvar
{"title":"数域有限扩展的Ostrowski商","authors":"Ehsan Shahoseini, A. Rajaei, A. Maarefparvar","doi":"10.2140/pjm.2022.321.415","DOIUrl":null,"url":null,"abstract":"For $L/K$ a finite Galois extension of number fields, the relative P\\'olya group $\\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\\Ost(L/K)$ as the cokernel of the capitulation map into $\\Po(L/K)$, and generalize some known results for $\\Po(L/\\mathbb{Q})$ to $\\Ost(L/K)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ostrowski quotients for finite extensions of number fields\",\"authors\":\"Ehsan Shahoseini, A. Rajaei, A. Maarefparvar\",\"doi\":\"10.2140/pjm.2022.321.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $L/K$ a finite Galois extension of number fields, the relative P\\\\'olya group $\\\\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\\\\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\\\\Ost(L/K)$ as the cokernel of the capitulation map into $\\\\Po(L/K)$, and generalize some known results for $\\\\Po(L/\\\\mathbb{Q})$ to $\\\\Ost(L/K)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.321.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于数域的有限Galois扩张$L/K$,相对P′olya群$\Po(L/K)$与$L/K$中的强模糊理想类群重合。本文利用Brumer-Rosen和Zantema的一个已知的与$\Po(L/K)$有关的精确序列,在文献中找到了一些经典结果的简短证明。然后,我们将“Ostrowski商”$\Ost(L/K)$定义为投降映射到$\Po(L/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ostrowski quotients for finite extensions of number fields
For $L/K$ a finite Galois extension of number fields, the relative P\'olya group $\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\Ost(L/K)$ as the cokernel of the capitulation map into $\Po(L/K)$, and generalize some known results for $\Po(L/\mathbb{Q})$ to $\Ost(L/K)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信