{"title":"数域有限扩展的Ostrowski商","authors":"Ehsan Shahoseini, A. Rajaei, A. Maarefparvar","doi":"10.2140/pjm.2022.321.415","DOIUrl":null,"url":null,"abstract":"For $L/K$ a finite Galois extension of number fields, the relative P\\'olya group $\\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\\Ost(L/K)$ as the cokernel of the capitulation map into $\\Po(L/K)$, and generalize some known results for $\\Po(L/\\mathbb{Q})$ to $\\Ost(L/K)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ostrowski quotients for finite extensions of number fields\",\"authors\":\"Ehsan Shahoseini, A. Rajaei, A. Maarefparvar\",\"doi\":\"10.2140/pjm.2022.321.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $L/K$ a finite Galois extension of number fields, the relative P\\\\'olya group $\\\\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\\\\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\\\\Ost(L/K)$ as the cokernel of the capitulation map into $\\\\Po(L/K)$, and generalize some known results for $\\\\Po(L/\\\\mathbb{Q})$ to $\\\\Ost(L/K)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.321.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ostrowski quotients for finite extensions of number fields
For $L/K$ a finite Galois extension of number fields, the relative P\'olya group $\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\Ost(L/K)$ as the cokernel of the capitulation map into $\Po(L/K)$, and generalize some known results for $\Po(L/\mathbb{Q})$ to $\Ost(L/K)$.