人工神经网络在Toyserkan平原地下水资源重金属浓度预测中的性能比较

Q4 Environmental Science
M. Alizamir, S. Sobhanardakani
{"title":"人工神经网络在Toyserkan平原地下水资源重金属浓度预测中的性能比较","authors":"M. Alizamir, S. Sobhanardakani","doi":"10.5812/AJEHE.11792","DOIUrl":null,"url":null,"abstract":"Nowadays, about 50% the world’s population is living in dry and semi dry regions and has utilized groundwater as a source of drinking water. Therefore, forecasting of pollutant content in these regions is vital. This study was conducted to compare the performance of artificial neural networks (ANNs) for prediction of As, Zn, and Pb content in groundwater resources of Toyserkan Plain. In this study, two types of artificial neural networks (ANNs), namely multi-layer perceptron (MLP) and Radial Basis Function (RBF) approaches, were examined using the observations of As, Zn, and Pb concentrations in groundwater resources of Toyserkan plain, Western Iran. Two statistical indicators, the coefficient of determination (R2) and root mean squared error (RMSE) were employed to evaluate the performances of various models. The results indicated that the best performance could be obtained by MLP, in terms of different statistical indicators during training and validation periods.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":"4 1","pages":"11792-11792"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Comparison of Performance of Artificial Neural Networks for Prediction of Heavy Metals Concentration in Groundwater Resources of Toyserkan Plain\",\"authors\":\"M. Alizamir, S. Sobhanardakani\",\"doi\":\"10.5812/AJEHE.11792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, about 50% the world’s population is living in dry and semi dry regions and has utilized groundwater as a source of drinking water. Therefore, forecasting of pollutant content in these regions is vital. This study was conducted to compare the performance of artificial neural networks (ANNs) for prediction of As, Zn, and Pb content in groundwater resources of Toyserkan Plain. In this study, two types of artificial neural networks (ANNs), namely multi-layer perceptron (MLP) and Radial Basis Function (RBF) approaches, were examined using the observations of As, Zn, and Pb concentrations in groundwater resources of Toyserkan plain, Western Iran. Two statistical indicators, the coefficient of determination (R2) and root mean squared error (RMSE) were employed to evaluate the performances of various models. The results indicated that the best performance could be obtained by MLP, in terms of different statistical indicators during training and validation periods.\",\"PeriodicalId\":8672,\"journal\":{\"name\":\"Avicenna Journal of Environmental Health Engineering\",\"volume\":\"4 1\",\"pages\":\"11792-11792\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Environmental Health Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/AJEHE.11792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/AJEHE.11792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 16

摘要

如今,世界上约有50%的人口生活在干旱和半干旱地区,并利用地下水作为饮用水的来源。因此,预测这些地区的污染物含量至关重要。本研究比较了人工神经网络(ann)在Toyserkan平原地下水资源As、Zn、Pb含量预测中的应用效果。本文采用多层感知器(MLP)和径向基函数(RBF)两种人工神经网络(ann)方法,对伊朗西部Toyserkan平原地下水资源中As、Zn和Pb的浓度进行了研究。采用决定系数(R2)和均方根误差(RMSE)两个统计指标评价各模型的性能。结果表明,在训练期和验证期的不同统计指标上,MLP的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Performance of Artificial Neural Networks for Prediction of Heavy Metals Concentration in Groundwater Resources of Toyserkan Plain
Nowadays, about 50% the world’s population is living in dry and semi dry regions and has utilized groundwater as a source of drinking water. Therefore, forecasting of pollutant content in these regions is vital. This study was conducted to compare the performance of artificial neural networks (ANNs) for prediction of As, Zn, and Pb content in groundwater resources of Toyserkan Plain. In this study, two types of artificial neural networks (ANNs), namely multi-layer perceptron (MLP) and Radial Basis Function (RBF) approaches, were examined using the observations of As, Zn, and Pb concentrations in groundwater resources of Toyserkan plain, Western Iran. Two statistical indicators, the coefficient of determination (R2) and root mean squared error (RMSE) were employed to evaluate the performances of various models. The results indicated that the best performance could be obtained by MLP, in terms of different statistical indicators during training and validation periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信