PEDOT:PSS包覆的神经界面超低阻抗金纳米柱微电极

Q3 Engineering
C. Nick, H. Schlaak, C. Thielemann
{"title":"PEDOT:PSS包覆的神经界面超低阻抗金纳米柱微电极","authors":"C. Nick, H. Schlaak, C. Thielemann","doi":"10.1504/IJNM.2017.10004717","DOIUrl":null,"url":null,"abstract":"Improving the neuron-electrode interface has been a focus of biomedical research for the last decade. Low impedance, high charge storage capacities and small geometrical surface area are desired for excellent recording conditions. A common way to improve this interface is to increase the electrochemically active surface area of the electrode using nanoporous or nanostructured electrode materials. In this paper, the fabrication of microelectrodes with very high aspect ratio gold nanopillars coated with the conducting polymer PEDOT:PSS is presented. The electrodes are simulated, manufactured and studied using scanning electron microscopy, atomic force microscopy, impedance spectroscopy, cyclic voltammetry and neural cell culture experiments. We show that PEDOT:PSS coated nanopillar electrodes have improved capacity, reduced impedance and in-vitro recordings reveal high signal-to-noise ratio. Depending on pillar height the impedance is more than 350 times smaller compared to planar gold electrodes at 1 kHz and reveals an electrode capacity more than 1,000 times higher.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"13 1","pages":"109"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEDOT:PSS coated Gold Nanopillar Microelectrodes with Ultralow Impedance for Neural Interfaces\",\"authors\":\"C. Nick, H. Schlaak, C. Thielemann\",\"doi\":\"10.1504/IJNM.2017.10004717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the neuron-electrode interface has been a focus of biomedical research for the last decade. Low impedance, high charge storage capacities and small geometrical surface area are desired for excellent recording conditions. A common way to improve this interface is to increase the electrochemically active surface area of the electrode using nanoporous or nanostructured electrode materials. In this paper, the fabrication of microelectrodes with very high aspect ratio gold nanopillars coated with the conducting polymer PEDOT:PSS is presented. The electrodes are simulated, manufactured and studied using scanning electron microscopy, atomic force microscopy, impedance spectroscopy, cyclic voltammetry and neural cell culture experiments. We show that PEDOT:PSS coated nanopillar electrodes have improved capacity, reduced impedance and in-vitro recordings reveal high signal-to-noise ratio. Depending on pillar height the impedance is more than 350 times smaller compared to planar gold electrodes at 1 kHz and reveals an electrode capacity more than 1,000 times higher.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\"13 1\",\"pages\":\"109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2017.10004717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2017.10004717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,改善神经元-电极界面一直是生物医学研究的焦点。低阻抗,高电荷存储容量和小的几何表面积是理想的记录条件。改善这种界面的一种常用方法是使用纳米多孔或纳米结构电极材料来增加电极的电化学活性表面积。本文介绍了用导电聚合物PEDOT:PSS包覆高纵横比金纳米柱制备微电极的方法。利用扫描电镜、原子力显微镜、阻抗谱、循环伏安法和神经细胞培养实验对电极进行了模拟、制造和研究。我们发现PEDOT:PSS涂层纳米柱电极具有提高容量,降低阻抗和体外记录显示高信噪比的优点。根据柱高的不同,阻抗比平面金电极在1khz时小350倍以上,而电极容量则高出1000倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PEDOT:PSS coated Gold Nanopillar Microelectrodes with Ultralow Impedance for Neural Interfaces
Improving the neuron-electrode interface has been a focus of biomedical research for the last decade. Low impedance, high charge storage capacities and small geometrical surface area are desired for excellent recording conditions. A common way to improve this interface is to increase the electrochemically active surface area of the electrode using nanoporous or nanostructured electrode materials. In this paper, the fabrication of microelectrodes with very high aspect ratio gold nanopillars coated with the conducting polymer PEDOT:PSS is presented. The electrodes are simulated, manufactured and studied using scanning electron microscopy, atomic force microscopy, impedance spectroscopy, cyclic voltammetry and neural cell culture experiments. We show that PEDOT:PSS coated nanopillar electrodes have improved capacity, reduced impedance and in-vitro recordings reveal high signal-to-noise ratio. Depending on pillar height the impedance is more than 350 times smaller compared to planar gold electrodes at 1 kHz and reveals an electrode capacity more than 1,000 times higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信