极小($\tau$-)倾斜无限代数

IF 0.8 2区 数学 Q2 MATHEMATICS
Kaveh Mousavand, Charles Paquette
{"title":"极小($\\tau$-)倾斜无限代数","authors":"Kaveh Mousavand, Charles Paquette","doi":"10.1017/nmj.2022.28","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal \n$\\tau $\n -tilting infinite (min- \n$\\tau $\n -infinite, for short) algebras. In particular, we treat min- \n$\\tau $\n -infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min- \n$\\tau $\n -infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"249 1","pages":"221 - 238"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MINIMAL ( \\n$\\\\tau $\\n -)TILTING INFINITE ALGEBRAS\",\"authors\":\"Kaveh Mousavand, Charles Paquette\",\"doi\":\"10.1017/nmj.2022.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal \\n$\\\\tau $\\n -tilting infinite (min- \\n$\\\\tau $\\n -infinite, for short) algebras. In particular, we treat min- \\n$\\\\tau $\\n -infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min- \\n$\\\\tau $\\n -infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"249 1\",\"pages\":\"221 - 238\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.28\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.28","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要受一个关于砖块行为的新猜想的启发,我们开始了对极小$\tau$-倾斜无限(简称min-$\tau$-无限)代数的系统研究。特别地,我们将min-$\tau$-无限代数视为最小表示无限代数的现代对应物,并展示了这些族之间的一些基本相似性和差异性。然后,我们将我们的研究与经典的倾斜理论联系起来,并观察到这种现代方法可以为研究一些旧问题提供新的动力。我们进一步证明,为了验证该猜想,处理那些几乎所有砖块都是忠实的min-$\tau$-无限代数就足够了。最后,我们还证明了最小延伸砖块具有开放轨道,从而获得了Scholl和Treffinger最近使用一些不同技术证明的第一个Brauer–Thrall猜想的砖块类似物的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MINIMAL ( $\tau $ -)TILTING INFINITE ALGEBRAS
Abstract Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal $\tau $ -tilting infinite (min- $\tau $ -infinite, for short) algebras. In particular, we treat min- $\tau $ -infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min- $\tau $ -infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信