{"title":"修正Zakharov-Kuznetsov方程Cauchy问题的适定性","authors":"S. Kinoshita","doi":"10.1619/fesi.65.139","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\\mathbb{R}^2)$ for $s \\geq 1/4$. If $d \\geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\\mathbb{R}^d)$ where $s_c = d/2-1$.","PeriodicalId":55134,"journal":{"name":"Funkcialaj Ekvacioj-Serio Internacia","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation\",\"authors\":\"S. Kinoshita\",\"doi\":\"10.1619/fesi.65.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\\\\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\\\\mathbb{R}^2)$ for $s \\\\geq 1/4$. If $d \\\\geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\\\\mathbb{R}^d)$ where $s_c = d/2-1$.\",\"PeriodicalId\":55134,\"journal\":{\"name\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.65.139\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funkcialaj Ekvacioj-Serio Internacia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation
This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\mathbb{R}^2)$ for $s \geq 1/4$. If $d \geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\mathbb{R}^d)$ where $s_c = d/2-1$.