修正Zakharov-Kuznetsov方程Cauchy问题的适定性

Pub Date : 2019-11-29 DOI:10.1619/fesi.65.139
S. Kinoshita
{"title":"修正Zakharov-Kuznetsov方程Cauchy问题的适定性","authors":"S. Kinoshita","doi":"10.1619/fesi.65.139","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\\mathbb{R}^2)$ for $s \\geq 1/4$. If $d \\geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\\mathbb{R}^d)$ where $s_c = d/2-1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation\",\"authors\":\"S. Kinoshita\",\"doi\":\"10.1619/fesi.65.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\\\\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\\\\mathbb{R}^2)$ for $s \\\\geq 1/4$. If $d \\\\geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\\\\mathbb{R}^d)$ where $s_c = d/2-1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.65.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文讨论了$\mathbb{R}^d$上修正的Zakharov-Kuz涅佐夫方程的Cauchy问题。如果$d=2$,我们证明了对于$s\geq1/4$在Sobolev空间$H^s(\mathbb{R}^2)$中的尖锐估计,该估计暗示了时间上的局部适定性。如果$d\geq3$,通过使用$U^p$和$V^p$空间,我们在缩放临界Sobolev空间$H^{s_c}(\mathbb{R}^d)$中建立了小数据全局适定性,其中$s_c=d/2-1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation
This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\mathbb{R}^2)$ for $s \geq 1/4$. If $d \geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\mathbb{R}^d)$ where $s_c = d/2-1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信