具有非局部边界条件的Oberbeck-Boussinesq系统

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
A. Abbatiello, E. Feireisl
{"title":"具有非局部边界条件的Oberbeck-Boussinesq系统","authors":"A. Abbatiello, E. Feireisl","doi":"10.1090/qam/1635","DOIUrl":null,"url":null,"abstract":"<p>We consider the Oberbeck–Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier–Stokes–Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma upper T Subscript normal m normal a normal x Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">m</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">x</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0, T_{\\mathrm {max}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript normal m normal a normal x Baseline equals normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">m</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">x</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T_{\\mathrm {max}} = \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the two-dimensional setting.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Oberbeck–Boussinesq system with non-local boundary conditions\",\"authors\":\"A. Abbatiello, E. Feireisl\",\"doi\":\"10.1090/qam/1635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Oberbeck–Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier–Stokes–Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma upper T Subscript normal m normal a normal x Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">m</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">a</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">x</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[0, T_{\\\\mathrm {max}})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Moreover, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript normal m normal a normal x Baseline equals normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">m</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">a</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">x</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T_{\\\\mathrm {max}} = \\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the two-dimensional setting.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1635\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

我们认为,在低马赫数和低弗劳德数的情况下,具有非局部边界条件的Oberbeck–Boussinesq系统是全Navier–Stokes–Fourier系统的奇异极限。在极大时间区间[0,Tm a x)[0,T_{\mathrm{max}})上证明了强解的存在性}=\infty在二维设置中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Oberbeck–Boussinesq system with non-local boundary conditions

We consider the Oberbeck–Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier–Stokes–Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval [ 0 , T m a x ) [0, T_{\mathrm {max}}) . Moreover, T m a x = T_{\mathrm {max}} = \infty in the two-dimensional setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信