流道截面尺寸对PEM燃料电池性能影响的数值研究

Q3 Energy
Mahmut Kaplan
{"title":"流道截面尺寸对PEM燃料电池性能影响的数值研究","authors":"Mahmut Kaplan","doi":"10.30521/jes.871018","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane fuel cell (PEMFC) has acquired increasing importance because of operating at higher efficiency and producing environmentally friendly power at low temperatures over the past decade. Flow channel as a vital part of PEMFC plays a critical role for augmenting the performance of PEMFC. In this paper, a single phase, 3-D model is generated to examine impact of the channel cross-section geometry on the cell performance. 15 different simulation cases were gained by altering the flow channel width and depth from 0.2 to 1.6 mm for the fixed depth and width of 1 mm, respectively. In the base case, the channel dimensions are 1.0 mm width and depth. The results revealed that decreasing depth and width of the channel enhanced the current density thanks to increasing gas velocity in the flow channels of the anode and cathode at the expense of increased pressure drop. The cases having the channel cross-sectional dimensions of 0.2 x 0.1 mm and 0.1 x 0.2 mm (channel width x depth) enhanced the current density about 57% and 45% at 0.4 V compared to the base case. Besides, oxygen consumption and water production in the cathode side are also remarkably increased in these cases. However, the channel cross-sectional size of 0.8 x 1 mm case which increases the current density 2.5% at 0.4 V in comparison with the base case can be best option by taking into consideration pressure drop into the flow channels.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of influence of cross-sectional dimensions of flow channels on PEM fuel cell performance\",\"authors\":\"Mahmut Kaplan\",\"doi\":\"10.30521/jes.871018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane fuel cell (PEMFC) has acquired increasing importance because of operating at higher efficiency and producing environmentally friendly power at low temperatures over the past decade. Flow channel as a vital part of PEMFC plays a critical role for augmenting the performance of PEMFC. In this paper, a single phase, 3-D model is generated to examine impact of the channel cross-section geometry on the cell performance. 15 different simulation cases were gained by altering the flow channel width and depth from 0.2 to 1.6 mm for the fixed depth and width of 1 mm, respectively. In the base case, the channel dimensions are 1.0 mm width and depth. The results revealed that decreasing depth and width of the channel enhanced the current density thanks to increasing gas velocity in the flow channels of the anode and cathode at the expense of increased pressure drop. The cases having the channel cross-sectional dimensions of 0.2 x 0.1 mm and 0.1 x 0.2 mm (channel width x depth) enhanced the current density about 57% and 45% at 0.4 V compared to the base case. Besides, oxygen consumption and water production in the cathode side are also remarkably increased in these cases. However, the channel cross-sectional size of 0.8 x 1 mm case which increases the current density 2.5% at 0.4 V in comparison with the base case can be best option by taking into consideration pressure drop into the flow channels.\",\"PeriodicalId\":52308,\"journal\":{\"name\":\"Journal of Energy Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30521/jes.871018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.871018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)由于在过去十年中以更高的效率运行并在低温下产生环境友好的电力而变得越来越重要。流道作为PEMFC的重要组成部分,对提高PEMFC的性能起着至关重要的作用。在本文中,生成了一个单相三维模型,以检查通道横截面几何形状对单元性能的影响。在固定深度和宽度为1mm的情况下,通过将流道宽度和深度分别从0.2 mm更改为1.6 mm,获得了15种不同的模拟情况。在基本情况下,通道尺寸为1.0 mm宽和1.0 mm深。结果表明,减小通道的深度和宽度提高了电流密度,这是由于以增加压降为代价增加了阳极和阴极流动通道中的气体速度。与基本情况相比,具有0.2 x 0.1 mm和0.1 x 0.2 mm(沟道宽度x深度)的沟道横截面尺寸的情况在0.4V下增强了约57%和45%的电流密度。此外,在这些情况下,阴极侧的耗氧量和产水量也显著增加。然而,考虑到流入流道的压降,通道横截面尺寸为0.8 x 1 mm的情况下,与基本情况相比,在0.4 V时电流密度增加2.5%,这可能是最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of influence of cross-sectional dimensions of flow channels on PEM fuel cell performance
Proton exchange membrane fuel cell (PEMFC) has acquired increasing importance because of operating at higher efficiency and producing environmentally friendly power at low temperatures over the past decade. Flow channel as a vital part of PEMFC plays a critical role for augmenting the performance of PEMFC. In this paper, a single phase, 3-D model is generated to examine impact of the channel cross-section geometry on the cell performance. 15 different simulation cases were gained by altering the flow channel width and depth from 0.2 to 1.6 mm for the fixed depth and width of 1 mm, respectively. In the base case, the channel dimensions are 1.0 mm width and depth. The results revealed that decreasing depth and width of the channel enhanced the current density thanks to increasing gas velocity in the flow channels of the anode and cathode at the expense of increased pressure drop. The cases having the channel cross-sectional dimensions of 0.2 x 0.1 mm and 0.1 x 0.2 mm (channel width x depth) enhanced the current density about 57% and 45% at 0.4 V compared to the base case. Besides, oxygen consumption and water production in the cathode side are also remarkably increased in these cases. However, the channel cross-sectional size of 0.8 x 1 mm case which increases the current density 2.5% at 0.4 V in comparison with the base case can be best option by taking into consideration pressure drop into the flow channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Systems
Journal of Energy Systems Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.60
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信