{"title":"两个改进的杨氏不等式的新推广及其应用","authors":"M. Ighachane, M. Akkouchi","doi":"10.2478/mjpaa-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove that if a, b > 0 and 0 ≤ α ≤ 1, then for m = 1, 2, 3, . . . , r0m(am2-bm2)2≤r0m(bm+1-am+1b-a-(m+1)(ab)m2)≤(αa+(1-α)b)m-(aαb1-α)m, \\matrix{ {r_0^m{{\\left( {{a^{{m \\over 2}}} - {b^{{m \\over 2}}}} \\right)}^2}} & { \\le r_0^m\\left( {{{{b^{m + 1}} - {a^{m + 1}}} \\over {b - a}} - \\left( {m + 1} \\right){{\\left( {ab} \\right)}^{{m \\over 2}}}} \\right)} \\cr {} & { \\le {{\\left( {\\alpha a + \\left( {1 - \\alpha } \\right)b} \\right)}^m} - {{\\left( {{a^\\alpha }{b^{1 - \\alpha }}} \\right)}^m},} \\cr } where r0 = min{α, 1 – α }. This is a considerable new generalization of two refinements of the Young inequality due to Kittaneh and Manasrah, and Hirzallah and Kittaneh, which correspond to the cases m = 1 and m = 2, respectively. As applications we give some refined Young type inequalities for generalized euclidean operator radius and the numerical radius of some well-know f -connection of operators and refined some Young type inequalities for the traces, determinants, and norms of positive definite matrices.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"6 1","pages":"155 - 167"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new generalization of two refined Young inequalities and applications\",\"authors\":\"M. Ighachane, M. Akkouchi\",\"doi\":\"10.2478/mjpaa-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove that if a, b > 0 and 0 ≤ α ≤ 1, then for m = 1, 2, 3, . . . , r0m(am2-bm2)2≤r0m(bm+1-am+1b-a-(m+1)(ab)m2)≤(αa+(1-α)b)m-(aαb1-α)m, \\\\matrix{ {r_0^m{{\\\\left( {{a^{{m \\\\over 2}}} - {b^{{m \\\\over 2}}}} \\\\right)}^2}} & { \\\\le r_0^m\\\\left( {{{{b^{m + 1}} - {a^{m + 1}}} \\\\over {b - a}} - \\\\left( {m + 1} \\\\right){{\\\\left( {ab} \\\\right)}^{{m \\\\over 2}}}} \\\\right)} \\\\cr {} & { \\\\le {{\\\\left( {\\\\alpha a + \\\\left( {1 - \\\\alpha } \\\\right)b} \\\\right)}^m} - {{\\\\left( {{a^\\\\alpha }{b^{1 - \\\\alpha }}} \\\\right)}^m},} \\\\cr } where r0 = min{α, 1 – α }. This is a considerable new generalization of two refinements of the Young inequality due to Kittaneh and Manasrah, and Hirzallah and Kittaneh, which correspond to the cases m = 1 and m = 2, respectively. As applications we give some refined Young type inequalities for generalized euclidean operator radius and the numerical radius of some well-know f -connection of operators and refined some Young type inequalities for the traces, determinants, and norms of positive definite matrices.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"6 1\",\"pages\":\"155 - 167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2020-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
摘要
摘要本文证明了如果a,b>0且0≤α≤1,则对于m=1,2,3,r0m(am2-bm2)2≤r0m(bm+1-am+1b-a-(m+1)(ab)m2)≤(αa+(1-α)b)m-(aαb1-α)m,矩阵{r_0^m{\left({a^{m\ over 2}})}-{b^{m \ over2}}}\ right)}^2}和{\le r_0^m\ left({1-\alpha}\right)b}\right)}^m}-{\left({a^\alpha}{b^{1-\alpha}}\right)}^ m},}\cr}其中r0=min{α,1–α}。这是由Kittaneh和Manasrah以及Hirzallah和Kittaneh对Young不等式的两个精化的相当新的推广,这两个精化分别对应于m=1和m=2的情况。作为应用,我们给出了一些关于广义欧氏算子半径和一些众所周知的算子f-连接的数值半径的精细化Young型不等式,以及一些关于正定矩阵的迹、行列式和范数的精细化杨氏型不等式。
A new generalization of two refined Young inequalities and applications
Abstract In this paper, we prove that if a, b > 0 and 0 ≤ α ≤ 1, then for m = 1, 2, 3, . . . , r0m(am2-bm2)2≤r0m(bm+1-am+1b-a-(m+1)(ab)m2)≤(αa+(1-α)b)m-(aαb1-α)m, \matrix{ {r_0^m{{\left( {{a^{{m \over 2}}} - {b^{{m \over 2}}}} \right)}^2}} & { \le r_0^m\left( {{{{b^{m + 1}} - {a^{m + 1}}} \over {b - a}} - \left( {m + 1} \right){{\left( {ab} \right)}^{{m \over 2}}}} \right)} \cr {} & { \le {{\left( {\alpha a + \left( {1 - \alpha } \right)b} \right)}^m} - {{\left( {{a^\alpha }{b^{1 - \alpha }}} \right)}^m},} \cr } where r0 = min{α, 1 – α }. This is a considerable new generalization of two refinements of the Young inequality due to Kittaneh and Manasrah, and Hirzallah and Kittaneh, which correspond to the cases m = 1 and m = 2, respectively. As applications we give some refined Young type inequalities for generalized euclidean operator radius and the numerical radius of some well-know f -connection of operators and refined some Young type inequalities for the traces, determinants, and norms of positive definite matrices.