{"title":"等差数列上的数字和函数","authors":"Lukas Spiegelhofer, T. Stoll","doi":"10.2140/moscow.2020.9.43","DOIUrl":null,"url":null,"abstract":"Let $s_2$ be the sum-of-digits function in base $2$, which returns the number of non-zero binary digits of a nonnegative integer $n$. We study $s_2$ alon g arithmetic subsequences and show that --- up to a shift --- the set of $m$-tuples of integers that appear as an arithmetic subsequence of $s_2$ has full complexity.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2020.9.43","citationCount":"0","resultStr":"{\"title\":\"The sum-of-digits function on arithmetic progressions\",\"authors\":\"Lukas Spiegelhofer, T. Stoll\",\"doi\":\"10.2140/moscow.2020.9.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $s_2$ be the sum-of-digits function in base $2$, which returns the number of non-zero binary digits of a nonnegative integer $n$. We study $s_2$ alon g arithmetic subsequences and show that --- up to a shift --- the set of $m$-tuples of integers that appear as an arithmetic subsequence of $s_2$ has full complexity.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2020.9.43\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2020.9.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The sum-of-digits function on arithmetic progressions
Let $s_2$ be the sum-of-digits function in base $2$, which returns the number of non-zero binary digits of a nonnegative integer $n$. We study $s_2$ alon g arithmetic subsequences and show that --- up to a shift --- the set of $m$-tuples of integers that appear as an arithmetic subsequence of $s_2$ has full complexity.