带电粒子的新古典模型

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
F. De Zela
{"title":"带电粒子的新古典模型","authors":"F. De Zela","doi":"10.1088/2399-6528/acefa6","DOIUrl":null,"url":null,"abstract":"Classical electrodynamics (CED) has achieved great success in its domain of application, but despite this success, it has remained a theory that lacks complete self-consistency. It is worthwhile trying to make CED a self-consistent theory, because many important phenomena lie within its scope, and because modern field theories have been modelled on it. Alternative approaches to CED might help finding a definite formulation, and they might also lead to the prediction of new phenomena. Here we report two main results. The first one derives from standard CED. It is shown that the motion of a charged particle is ruled not only by the Lorentz equation, but also by equations that are formally identical to Maxwell equations. The latter hold for a velocity field and follow as a strict logical consequence of Hamilton’s action principle for a single particle. We construct a tensor with the velocity field in the same way as the electromagnetic tensor is constructed with the four potential. The two tensors are shown to be proportional to one another. As a consequence, and without leaving the realm of standard CED, one can envision new phenomena for a charged particle, which parallel those involving electromagnetic fields. The second result refers to a field-free approach to CED. This approach confirms the simultaneous validity of Maxwell-like and Lorentz equations as rulers of charged particle motion.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neoclassical models of charged particles\",\"authors\":\"F. De Zela\",\"doi\":\"10.1088/2399-6528/acefa6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical electrodynamics (CED) has achieved great success in its domain of application, but despite this success, it has remained a theory that lacks complete self-consistency. It is worthwhile trying to make CED a self-consistent theory, because many important phenomena lie within its scope, and because modern field theories have been modelled on it. Alternative approaches to CED might help finding a definite formulation, and they might also lead to the prediction of new phenomena. Here we report two main results. The first one derives from standard CED. It is shown that the motion of a charged particle is ruled not only by the Lorentz equation, but also by equations that are formally identical to Maxwell equations. The latter hold for a velocity field and follow as a strict logical consequence of Hamilton’s action principle for a single particle. We construct a tensor with the velocity field in the same way as the electromagnetic tensor is constructed with the four potential. The two tensors are shown to be proportional to one another. As a consequence, and without leaving the realm of standard CED, one can envision new phenomena for a charged particle, which parallel those involving electromagnetic fields. The second result refers to a field-free approach to CED. This approach confirms the simultaneous validity of Maxwell-like and Lorentz equations as rulers of charged particle motion.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acefa6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acefa6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

经典电动力学(CED)在其应用领域取得了巨大的成功,但尽管如此,它仍然是一个缺乏完全自洽性的理论。使其成为一个自洽理论是值得尝试的,因为许多重要的现象都在它的范围之内,而且现代场论都是以它为模型的。对CED的替代方法可能有助于找到一个明确的公式,它们也可能导致对新现象的预测。这里我们报告两个主要结果。第一个来源于标准CED。结果表明,带电粒子的运动不仅由洛伦兹方程决定,而且也由形式上与麦克斯韦方程相同的方程决定。后者适用于速度场,并遵循汉密尔顿作用原理对单个粒子的严格逻辑推论。我们用速度场构造一个张量就像用四势构造电磁张量一样。这两个张量是成比例的。因此,在不离开标准CED领域的情况下,人们可以设想带电粒子的新现象,这些现象与涉及电磁场的现象相似。第二个结果指的是一种无字段的CED方法。这种方法证实了麦克斯韦方程和洛伦兹方程同时作为带电粒子运动的标尺的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neoclassical models of charged particles
Classical electrodynamics (CED) has achieved great success in its domain of application, but despite this success, it has remained a theory that lacks complete self-consistency. It is worthwhile trying to make CED a self-consistent theory, because many important phenomena lie within its scope, and because modern field theories have been modelled on it. Alternative approaches to CED might help finding a definite formulation, and they might also lead to the prediction of new phenomena. Here we report two main results. The first one derives from standard CED. It is shown that the motion of a charged particle is ruled not only by the Lorentz equation, but also by equations that are formally identical to Maxwell equations. The latter hold for a velocity field and follow as a strict logical consequence of Hamilton’s action principle for a single particle. We construct a tensor with the velocity field in the same way as the electromagnetic tensor is constructed with the four potential. The two tensors are shown to be proportional to one another. As a consequence, and without leaving the realm of standard CED, one can envision new phenomena for a charged particle, which parallel those involving electromagnetic fields. The second result refers to a field-free approach to CED. This approach confirms the simultaneous validity of Maxwell-like and Lorentz equations as rulers of charged particle motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信