社交媒体上与相互依赖的隐私感知相关的用户特征建模

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS
M. J. Amon, Aaron Necaise, N. Kartvelishvili, Aneka Williams, Yan Solihin, Apu Kapadia
{"title":"社交媒体上与相互依赖的隐私感知相关的用户特征建模","authors":"M. J. Amon, Aaron Necaise, N. Kartvelishvili, Aneka Williams, Yan Solihin, Apu Kapadia","doi":"10.1145/3577014","DOIUrl":null,"url":null,"abstract":"“Interdependent” privacy violations occur when users share private photos and information about other people in social media without permission. This research investigated user characteristics associated with interdependent privacy perceptions, by asking social media users to rate photo-based memes depicting strangers on the degree to which they were too private to share. Users also completed questionnaires measuring social media usage and personality. Separate groups rated the memes on shareability, valence, and entertainment value. Users were less likely to share memes that were rated as private, except when the meme was entertaining or when users exhibited dark triad characteristics. Users with dark triad characteristics demonstrated a heightened awareness of interdependent privacy and increased sharing of others’ photos. A model is introduced that highlights user types and characteristics that correspond to different privacy preferences: privacy preservers, ignorers, and violators. We discuss how interventions to support interdependent privacy must effectively influence diverse users.","PeriodicalId":50917,"journal":{"name":"ACM Transactions on Computer-Human Interaction","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling User Characteristics Associated with Interdependent Privacy Perceptions on Social Media\",\"authors\":\"M. J. Amon, Aaron Necaise, N. Kartvelishvili, Aneka Williams, Yan Solihin, Apu Kapadia\",\"doi\":\"10.1145/3577014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Interdependent” privacy violations occur when users share private photos and information about other people in social media without permission. This research investigated user characteristics associated with interdependent privacy perceptions, by asking social media users to rate photo-based memes depicting strangers on the degree to which they were too private to share. Users also completed questionnaires measuring social media usage and personality. Separate groups rated the memes on shareability, valence, and entertainment value. Users were less likely to share memes that were rated as private, except when the meme was entertaining or when users exhibited dark triad characteristics. Users with dark triad characteristics demonstrated a heightened awareness of interdependent privacy and increased sharing of others’ photos. A model is introduced that highlights user types and characteristics that correspond to different privacy preferences: privacy preservers, ignorers, and violators. We discuss how interventions to support interdependent privacy must effectively influence diverse users.\",\"PeriodicalId\":50917,\"journal\":{\"name\":\"ACM Transactions on Computer-Human Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer-Human Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3577014\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3577014","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

当用户未经许可在社交媒体上分享他人的私人照片和信息时,就会发生“相互依赖”的隐私侵犯。这项研究调查了与相互依存的隐私感知相关的用户特征,要求社交媒体用户对描述陌生人的基于照片的模因进行评分,以确定它们过于隐私而无法分享的程度。用户还完成了测量社交媒体使用情况和个性的问卷调查。不同的小组对模因的可分享性、效价和娱乐价值进行了评分。用户不太可能分享被评为私人的模因,除非模因很有趣,或者用户表现出黑暗的黑社会特征。具有黑社会特征的用户表现出对相互依存的隐私的高度意识,并增加了对他人照片的共享。引入了一个模型,突出了与不同隐私偏好相对应的用户类型和特征:隐私保护者、忽视者和违反者。我们讨论了支持相互依存的隐私的干预措施必须如何有效地影响不同的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling User Characteristics Associated with Interdependent Privacy Perceptions on Social Media
“Interdependent” privacy violations occur when users share private photos and information about other people in social media without permission. This research investigated user characteristics associated with interdependent privacy perceptions, by asking social media users to rate photo-based memes depicting strangers on the degree to which they were too private to share. Users also completed questionnaires measuring social media usage and personality. Separate groups rated the memes on shareability, valence, and entertainment value. Users were less likely to share memes that were rated as private, except when the meme was entertaining or when users exhibited dark triad characteristics. Users with dark triad characteristics demonstrated a heightened awareness of interdependent privacy and increased sharing of others’ photos. A model is introduced that highlights user types and characteristics that correspond to different privacy preferences: privacy preservers, ignorers, and violators. We discuss how interventions to support interdependent privacy must effectively influence diverse users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computer-Human Interaction
ACM Transactions on Computer-Human Interaction 工程技术-计算机:控制论
CiteScore
8.50
自引率
5.40%
发文量
94
审稿时长
>12 weeks
期刊介绍: This ACM Transaction seeks to be the premier archival journal in the multidisciplinary field of human-computer interaction. Since its first issue in March 1994, it has presented work of the highest scientific quality that contributes to the practice in the present and future. The primary emphasis is on results of broad application, but the journal considers original work focused on specific domains, on special requirements, on ethical issues -- the full range of design, development, and use of interactive systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信