生物可降解塑料、聚乙烯和纸覆盖下的差异气体交换和土壤小气候动力学

IF 2.6 3区 农林科学 Q1 AGRONOMY
Henry Y. Sintim, K. Shahzad, A. Bary, D. P. Collins, E. Myhre, M. Flury
{"title":"生物可降解塑料、聚乙烯和纸覆盖下的差异气体交换和土壤小气候动力学","authors":"Henry Y. Sintim, K. Shahzad, A. Bary, D. P. Collins, E. Myhre, M. Flury","doi":"10.4081/ija.2022.1979","DOIUrl":null,"url":null,"abstract":"Biodegradable plastic mulch is potentially a suitable alternative to conventional polyethylene mulch because of the limited disposal options of the latter. However, biodegradable plastic mulch must perform better or comparably to polyethylene mulch to be widely adopted. Gas exchange and soil microclimate are important factors impacted by the use of plastic mulch, which in turn have implications on crop productivity. A controlled-environment study was established in a greenhouse to assess gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches with and without planting holes, as well as the impact of the mulches on the growth of sweet corn (Zea mays). A no-mulch condition was included as control. In addition, we monitored CO2 concentrations in the vicinity of planting holes (chimney effect) in a greenhouse and agricultural field conditions under sweet corn production. The plastic mulches (both biodegradable plastic and polyethylene mulches) decreased the soil O2concentration to a minimum of 181–183 mmol mol-1, and when compared to the no-mulch, the plastic mulches reduced water loss within 50 days by 35–68 mm. The paper mulch inhibited light penetration more than did the plastic mulches. There was an increase in the CO2 concentration at 2.5 cm above the planting holes in the plastic mulches compared to that under the no-mulch. However, the differences were not discernible at 15 cm above the ground. Consequently, we did not observe significant impacts on the growth of sweet corn, possibly, because the canopy height of sweet corn was more than 15 cm within a few days after planting. Overall, the plastic mulches did not reduce O2 concentration below 100 mmol mol-1, the minimum level in which plant growth becomes impaired. Also, the often reported improved growth of sweet corn from plastic mulching could be attributable to other factors, such as weed control, reduced water loss, and early season soil warming, rather than elevated CO2 concentrations and fluxes in the vicinity of planting holes.\n \nHighlights- Gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches were assessed - Elevated CO2 levels were observed near planting holes of plastic mulches (both biodegradable and polyethylene) - The plastic mulches inhibited O2 exchange, but not to a level that could impair plant growth - Polyethylene mulch conserved soil water better than biodegradable plastic and paper mulches - Paper mulch inhibited light penetration better than plastic mulches","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differential gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches\",\"authors\":\"Henry Y. Sintim, K. Shahzad, A. Bary, D. P. Collins, E. Myhre, M. Flury\",\"doi\":\"10.4081/ija.2022.1979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodegradable plastic mulch is potentially a suitable alternative to conventional polyethylene mulch because of the limited disposal options of the latter. However, biodegradable plastic mulch must perform better or comparably to polyethylene mulch to be widely adopted. Gas exchange and soil microclimate are important factors impacted by the use of plastic mulch, which in turn have implications on crop productivity. A controlled-environment study was established in a greenhouse to assess gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches with and without planting holes, as well as the impact of the mulches on the growth of sweet corn (Zea mays). A no-mulch condition was included as control. In addition, we monitored CO2 concentrations in the vicinity of planting holes (chimney effect) in a greenhouse and agricultural field conditions under sweet corn production. The plastic mulches (both biodegradable plastic and polyethylene mulches) decreased the soil O2concentration to a minimum of 181–183 mmol mol-1, and when compared to the no-mulch, the plastic mulches reduced water loss within 50 days by 35–68 mm. The paper mulch inhibited light penetration more than did the plastic mulches. There was an increase in the CO2 concentration at 2.5 cm above the planting holes in the plastic mulches compared to that under the no-mulch. However, the differences were not discernible at 15 cm above the ground. Consequently, we did not observe significant impacts on the growth of sweet corn, possibly, because the canopy height of sweet corn was more than 15 cm within a few days after planting. Overall, the plastic mulches did not reduce O2 concentration below 100 mmol mol-1, the minimum level in which plant growth becomes impaired. Also, the often reported improved growth of sweet corn from plastic mulching could be attributable to other factors, such as weed control, reduced water loss, and early season soil warming, rather than elevated CO2 concentrations and fluxes in the vicinity of planting holes.\\n \\nHighlights- Gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches were assessed - Elevated CO2 levels were observed near planting holes of plastic mulches (both biodegradable and polyethylene) - The plastic mulches inhibited O2 exchange, but not to a level that could impair plant growth - Polyethylene mulch conserved soil water better than biodegradable plastic and paper mulches - Paper mulch inhibited light penetration better than plastic mulches\",\"PeriodicalId\":14618,\"journal\":{\"name\":\"Italian Journal of Agronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4081/ija.2022.1979\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/ija.2022.1979","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

摘要

可生物降解的塑料覆盖物可能是传统聚乙烯覆盖物的合适替代品,因为后者的处置选择有限。然而,生物可降解地膜必须比聚乙烯地膜性能更好或相当才能被广泛采用。气体交换和土壤小气候是地膜覆盖影响作物产量的重要因素。通过温室环境试验,研究了生物可降解塑料、聚乙烯和纸覆盖下有孔和无孔甜玉米的气体交换和土壤小气候动态,以及覆盖对甜玉米生长的影响。不覆盖条件作为对照。此外,我们还监测了温室种植孔附近的CO2浓度(烟囱效应)和甜玉米生产的农业大田条件。地膜覆盖(包括生物可降解地膜和聚乙烯地膜)使土壤o2浓度降低至最低181 ~ 183 mmol mol-1,与不覆盖相比,地膜覆盖使土壤50 d内水分流失量减少35 ~ 68 mm。纸地膜比塑料地膜更能抑制光的穿透。地膜覆盖下种植孔上方2.5 cm处CO2浓度明显高于无地膜覆盖下。然而,在离地面15厘米的地方,这种差异就看不出来了。因此,我们没有观察到对甜玉米生长的显著影响,这可能是因为甜玉米在种植后几天内的冠层高度超过了15cm。总体而言,在100 mmol mol-1以下的O2浓度下,覆膜并没有使植物的生长受到损害。此外,经常报道的塑料覆盖对甜玉米生长的改善可能归因于其他因素,如杂草控制、减少水分流失和早期土壤变暖,而不是种植孔附近二氧化碳浓度和通量的增加。重点-评估了生物可降解塑料、聚乙烯和纸质地膜下的气体交换和土壤小气候动态-在塑料地膜(生物可降解和聚乙烯)种植孔附近观察到二氧化碳水平升高-塑料地膜抑制了氧气交换。聚乙烯地膜比可生物降解的塑料地膜和纸地膜更能保持土壤水分,而纸地膜比塑料地膜更能抑制光的穿透
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches
Biodegradable plastic mulch is potentially a suitable alternative to conventional polyethylene mulch because of the limited disposal options of the latter. However, biodegradable plastic mulch must perform better or comparably to polyethylene mulch to be widely adopted. Gas exchange and soil microclimate are important factors impacted by the use of plastic mulch, which in turn have implications on crop productivity. A controlled-environment study was established in a greenhouse to assess gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches with and without planting holes, as well as the impact of the mulches on the growth of sweet corn (Zea mays). A no-mulch condition was included as control. In addition, we monitored CO2 concentrations in the vicinity of planting holes (chimney effect) in a greenhouse and agricultural field conditions under sweet corn production. The plastic mulches (both biodegradable plastic and polyethylene mulches) decreased the soil O2concentration to a minimum of 181–183 mmol mol-1, and when compared to the no-mulch, the plastic mulches reduced water loss within 50 days by 35–68 mm. The paper mulch inhibited light penetration more than did the plastic mulches. There was an increase in the CO2 concentration at 2.5 cm above the planting holes in the plastic mulches compared to that under the no-mulch. However, the differences were not discernible at 15 cm above the ground. Consequently, we did not observe significant impacts on the growth of sweet corn, possibly, because the canopy height of sweet corn was more than 15 cm within a few days after planting. Overall, the plastic mulches did not reduce O2 concentration below 100 mmol mol-1, the minimum level in which plant growth becomes impaired. Also, the often reported improved growth of sweet corn from plastic mulching could be attributable to other factors, such as weed control, reduced water loss, and early season soil warming, rather than elevated CO2 concentrations and fluxes in the vicinity of planting holes.   Highlights- Gas exchange and soil microclimate dynamics under biodegradable plastic, polyethylene, and paper mulches were assessed - Elevated CO2 levels were observed near planting holes of plastic mulches (both biodegradable and polyethylene) - The plastic mulches inhibited O2 exchange, but not to a level that could impair plant growth - Polyethylene mulch conserved soil water better than biodegradable plastic and paper mulches - Paper mulch inhibited light penetration better than plastic mulches
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
4.50%
发文量
25
审稿时长
10 weeks
期刊介绍: The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信