{"title":"广义Sasakian空间形式的Legendarian子流形上的Wintgen不等式","authors":" Hui Shyamal K., Lemence Richard S., Mandal Pradip","doi":"10.14712/1213-7243.2020.006","DOIUrl":null,"url":null,"abstract":". A submanifold M m of a generalized Sasakian-space-form M 2 n +1 ( f 1 , f 2 ,f 3 ) is said to be C -totally real submanifold if ξ ∈ Γ( T ⊥ M ) and ϕX ∈ Γ( T ⊥ M ) for all X ∈ Γ( TM ). In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten–van Kampen connection and Tanaka–Webster connection.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms\",\"authors\":\" Hui Shyamal K., Lemence Richard S., Mandal Pradip\",\"doi\":\"10.14712/1213-7243.2020.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A submanifold M m of a generalized Sasakian-space-form M 2 n +1 ( f 1 , f 2 ,f 3 ) is said to be C -totally real submanifold if ξ ∈ Γ( T ⊥ M ) and ϕX ∈ Γ( T ⊥ M ) for all X ∈ Γ( TM ). In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten–van Kampen connection and Tanaka–Webster connection.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2020.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms
. A submanifold M m of a generalized Sasakian-space-form M 2 n +1 ( f 1 , f 2 ,f 3 ) is said to be C -totally real submanifold if ξ ∈ Γ( T ⊥ M ) and ϕX ∈ Γ( T ⊥ M ) for all X ∈ Γ( TM ). In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten–van Kampen connection and Tanaka–Webster connection.