{"title":"带调整误差条的汇总图:在R中实现的出色框架","authors":"D. Cousineau, Marc-André Goulet, Bradley Harding","doi":"10.1177/25152459211035109","DOIUrl":null,"url":null,"abstract":"Plotting the data of an experiment allows researchers to illustrate the main results of a study, show effect sizes, compare conditions, and guide interpretations. To achieve all this, it is necessary to show point estimates of the results and their precision using error bars. Often, and potentially unbeknownst to them, researchers use a type of error bars—the confidence intervals—that convey limited information. For instance, confidence intervals do not allow comparing results (a) between groups, (b) between repeated measures, (c) when participants are sampled in clusters, and (d) when the population size is finite. The use of such stand-alone error bars can lead to discrepancies between the plot’s display and the conclusions derived from statistical tests. To overcome this problem, we propose to generalize the precision of the results (the confidence intervals) by adjusting them so that they take into account the experimental design and the sampling methodology. Unfortunately, most software dedicated to statistical analyses do not offer options to adjust error bars. As a solution, we developed an open-access, open-source library for R—superb—that allows users to create summary plots with easily adjusted error bars.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"4 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Summary Plots With Adjusted Error Bars: The superb Framework With an Implementation in R\",\"authors\":\"D. Cousineau, Marc-André Goulet, Bradley Harding\",\"doi\":\"10.1177/25152459211035109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plotting the data of an experiment allows researchers to illustrate the main results of a study, show effect sizes, compare conditions, and guide interpretations. To achieve all this, it is necessary to show point estimates of the results and their precision using error bars. Often, and potentially unbeknownst to them, researchers use a type of error bars—the confidence intervals—that convey limited information. For instance, confidence intervals do not allow comparing results (a) between groups, (b) between repeated measures, (c) when participants are sampled in clusters, and (d) when the population size is finite. The use of such stand-alone error bars can lead to discrepancies between the plot’s display and the conclusions derived from statistical tests. To overcome this problem, we propose to generalize the precision of the results (the confidence intervals) by adjusting them so that they take into account the experimental design and the sampling methodology. Unfortunately, most software dedicated to statistical analyses do not offer options to adjust error bars. As a solution, we developed an open-access, open-source library for R—superb—that allows users to create summary plots with easily adjusted error bars.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459211035109\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459211035109","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Summary Plots With Adjusted Error Bars: The superb Framework With an Implementation in R
Plotting the data of an experiment allows researchers to illustrate the main results of a study, show effect sizes, compare conditions, and guide interpretations. To achieve all this, it is necessary to show point estimates of the results and their precision using error bars. Often, and potentially unbeknownst to them, researchers use a type of error bars—the confidence intervals—that convey limited information. For instance, confidence intervals do not allow comparing results (a) between groups, (b) between repeated measures, (c) when participants are sampled in clusters, and (d) when the population size is finite. The use of such stand-alone error bars can lead to discrepancies between the plot’s display and the conclusions derived from statistical tests. To overcome this problem, we propose to generalize the precision of the results (the confidence intervals) by adjusting them so that they take into account the experimental design and the sampling methodology. Unfortunately, most software dedicated to statistical analyses do not offer options to adjust error bars. As a solution, we developed an open-access, open-source library for R—superb—that allows users to create summary plots with easily adjusted error bars.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.