{"title":"电循环负载和热循环负载对HfO2纳米膜机械性能的影响。分子动力学研究","authors":"R. Kayser, S. F. Ferdous, A. Adnan","doi":"10.1504/ijcmsse.2020.10032743","DOIUrl":null,"url":null,"abstract":"We present an atomistic computational study of electric field and thermal effects on the mechanical behaviour of memristor material HfO2. Memristor materials are used for neuromorphic computation which promises to decrease energy consumption and improve the efficiency of important computational tasks, such as perception and decision making. In our study, first, the atomistic model of HfO2 is built on a monoclinic lattice structure. Then, tensile tests have been carried out to study its mechanical behaviour. Since the material has non-symmetric crystal structure, we observe varied tensile properties along the x, y and z directions. In addition, the effects of electrical field on mechanical behaviour are studied by varying the electrical field intensity from 0 to 0.3 v/A gradually. For each case, atomistic snapshots are taken to identify the changes occur in the structure due to the electric field. A significant structural damage on the crystal structure of HfO2 is observed after applying 0.3 v/A electric field, whereas the structural change is insignificant when the magnitude of the electric field is 0.2 v/A or less. To understand more about the damage of this material, shear loads are applied in different directions and their responses are studied elaborately in this paper.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of combined electrical and thermal cyclic loading on the mechanical behaviour of HfO2 nanofilm. A molecular dynamics study\",\"authors\":\"R. Kayser, S. F. Ferdous, A. Adnan\",\"doi\":\"10.1504/ijcmsse.2020.10032743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an atomistic computational study of electric field and thermal effects on the mechanical behaviour of memristor material HfO2. Memristor materials are used for neuromorphic computation which promises to decrease energy consumption and improve the efficiency of important computational tasks, such as perception and decision making. In our study, first, the atomistic model of HfO2 is built on a monoclinic lattice structure. Then, tensile tests have been carried out to study its mechanical behaviour. Since the material has non-symmetric crystal structure, we observe varied tensile properties along the x, y and z directions. In addition, the effects of electrical field on mechanical behaviour are studied by varying the electrical field intensity from 0 to 0.3 v/A gradually. For each case, atomistic snapshots are taken to identify the changes occur in the structure due to the electric field. A significant structural damage on the crystal structure of HfO2 is observed after applying 0.3 v/A electric field, whereas the structural change is insignificant when the magnitude of the electric field is 0.2 v/A or less. To understand more about the damage of this material, shear loads are applied in different directions and their responses are studied elaborately in this paper.\",\"PeriodicalId\":39426,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Surface Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcmsse.2020.10032743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2020.10032743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
The effect of combined electrical and thermal cyclic loading on the mechanical behaviour of HfO2 nanofilm. A molecular dynamics study
We present an atomistic computational study of electric field and thermal effects on the mechanical behaviour of memristor material HfO2. Memristor materials are used for neuromorphic computation which promises to decrease energy consumption and improve the efficiency of important computational tasks, such as perception and decision making. In our study, first, the atomistic model of HfO2 is built on a monoclinic lattice structure. Then, tensile tests have been carried out to study its mechanical behaviour. Since the material has non-symmetric crystal structure, we observe varied tensile properties along the x, y and z directions. In addition, the effects of electrical field on mechanical behaviour are studied by varying the electrical field intensity from 0 to 0.3 v/A gradually. For each case, atomistic snapshots are taken to identify the changes occur in the structure due to the electric field. A significant structural damage on the crystal structure of HfO2 is observed after applying 0.3 v/A electric field, whereas the structural change is insignificant when the magnitude of the electric field is 0.2 v/A or less. To understand more about the damage of this material, shear loads are applied in different directions and their responses are studied elaborately in this paper.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.