{"title":"有向优先依恋网络的PageRank渐近性","authors":"Sayantan Banerjee, Mariana Olvera-Cravioto","doi":"10.1214/21-aap1757","DOIUrl":null,"url":null,"abstract":"We characterize the tail behavior of the distribution of the PageRank of a uniformly chosen vertex in a directed preferential attachment graph and show that it decays as a power law with an explicit exponent that is described in terms of the model parameters. Interestingly, this power law is heavier than the tail of the limiting in-degree distribution, which goes against the commonly accepted power law hypothesis. This deviation from the power law hypothesis points at the structural differences between the inbound neighborhoods of typical vertices in a preferential attachment graph versus those in static random graph models where the power law hypothesis has been proven to hold (e.g., directed configuration models and inhomogeneous random digraphs). In addition to characterizing the PageRank distribution of a typical vertex, we also characterize the explicit growth rate of the PageRank of the oldest vertex as the network size grows.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PageRank asymptotics on directed preferential attachment networks\",\"authors\":\"Sayantan Banerjee, Mariana Olvera-Cravioto\",\"doi\":\"10.1214/21-aap1757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the tail behavior of the distribution of the PageRank of a uniformly chosen vertex in a directed preferential attachment graph and show that it decays as a power law with an explicit exponent that is described in terms of the model parameters. Interestingly, this power law is heavier than the tail of the limiting in-degree distribution, which goes against the commonly accepted power law hypothesis. This deviation from the power law hypothesis points at the structural differences between the inbound neighborhoods of typical vertices in a preferential attachment graph versus those in static random graph models where the power law hypothesis has been proven to hold (e.g., directed configuration models and inhomogeneous random digraphs). In addition to characterizing the PageRank distribution of a typical vertex, we also characterize the explicit growth rate of the PageRank of the oldest vertex as the network size grows.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aap1757\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aap1757","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
PageRank asymptotics on directed preferential attachment networks
We characterize the tail behavior of the distribution of the PageRank of a uniformly chosen vertex in a directed preferential attachment graph and show that it decays as a power law with an explicit exponent that is described in terms of the model parameters. Interestingly, this power law is heavier than the tail of the limiting in-degree distribution, which goes against the commonly accepted power law hypothesis. This deviation from the power law hypothesis points at the structural differences between the inbound neighborhoods of typical vertices in a preferential attachment graph versus those in static random graph models where the power law hypothesis has been proven to hold (e.g., directed configuration models and inhomogeneous random digraphs). In addition to characterizing the PageRank distribution of a typical vertex, we also characterize the explicit growth rate of the PageRank of the oldest vertex as the network size grows.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.