{"title":"在低比特率下更好的指纹图像压缩:一种使用优化预滤波系数的多小波的方法","authors":"N. Remac, K. T. Shanavaz, P. Mythili","doi":"10.21917/IJIVP.2017.0224","DOIUrl":null,"url":null,"abstract":"In this paper, a multiwavelet based fingerprint compression technique using set partitioning in hierarchical trees (SPIHT) algorithm with optimised prefilter coefficients is proposed. While wavelet based progressive compression techniques give a blurred image at lower bit rates due to lack of high frequency information, multiwavelets can be used efficiently to represent high frequency information. SA4 (Symmetric Antisymmetric) multiwavelet when combined with SPIHT reduces the number of nodes during initialization to 1/4 compared to SPIHT with wavelet. This reduction in nodes leads to improvement in PSNR at lower bit rates. The PSNR can be further improved by optimizing the prefilter coefficients. In this work genetic algorithm (GA) is used for optimizing prefilter coefficients. Using the proposed technique, there is a considerable improvement in PSNR at lower bit rates, compared to existing techniques in literature. An overall average improvement of 4.23dB and 2.52dB for bit rates in between 0.01 to 1 has been achieved for the images in the databases FVC 2000 DB1 and FVC 2002 DB3 respectively. The quality of the reconstructed image is better even at higher compression ratios like 80:1 and 100:1. The level of decomposition required for a multiwavelet is lesser compared to a wavelet.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"8 1","pages":"1588-1595"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BETTER FINGERPRINT IMAGE COMPRESSION AT LOWER BIT-RATES: AN APPROACH USING MULTIWAVELETS WITH OPTIMISED PREFILTER COEFFICIENTS\",\"authors\":\"N. Remac, K. T. Shanavaz, P. Mythili\",\"doi\":\"10.21917/IJIVP.2017.0224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multiwavelet based fingerprint compression technique using set partitioning in hierarchical trees (SPIHT) algorithm with optimised prefilter coefficients is proposed. While wavelet based progressive compression techniques give a blurred image at lower bit rates due to lack of high frequency information, multiwavelets can be used efficiently to represent high frequency information. SA4 (Symmetric Antisymmetric) multiwavelet when combined with SPIHT reduces the number of nodes during initialization to 1/4 compared to SPIHT with wavelet. This reduction in nodes leads to improvement in PSNR at lower bit rates. The PSNR can be further improved by optimizing the prefilter coefficients. In this work genetic algorithm (GA) is used for optimizing prefilter coefficients. Using the proposed technique, there is a considerable improvement in PSNR at lower bit rates, compared to existing techniques in literature. An overall average improvement of 4.23dB and 2.52dB for bit rates in between 0.01 to 1 has been achieved for the images in the databases FVC 2000 DB1 and FVC 2002 DB3 respectively. The quality of the reconstructed image is better even at higher compression ratios like 80:1 and 100:1. The level of decomposition required for a multiwavelet is lesser compared to a wavelet.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\"8 1\",\"pages\":\"1588-1595\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/IJIVP.2017.0224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2017.0224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BETTER FINGERPRINT IMAGE COMPRESSION AT LOWER BIT-RATES: AN APPROACH USING MULTIWAVELETS WITH OPTIMISED PREFILTER COEFFICIENTS
In this paper, a multiwavelet based fingerprint compression technique using set partitioning in hierarchical trees (SPIHT) algorithm with optimised prefilter coefficients is proposed. While wavelet based progressive compression techniques give a blurred image at lower bit rates due to lack of high frequency information, multiwavelets can be used efficiently to represent high frequency information. SA4 (Symmetric Antisymmetric) multiwavelet when combined with SPIHT reduces the number of nodes during initialization to 1/4 compared to SPIHT with wavelet. This reduction in nodes leads to improvement in PSNR at lower bit rates. The PSNR can be further improved by optimizing the prefilter coefficients. In this work genetic algorithm (GA) is used for optimizing prefilter coefficients. Using the proposed technique, there is a considerable improvement in PSNR at lower bit rates, compared to existing techniques in literature. An overall average improvement of 4.23dB and 2.52dB for bit rates in between 0.01 to 1 has been achieved for the images in the databases FVC 2000 DB1 and FVC 2002 DB3 respectively. The quality of the reconstructed image is better even at higher compression ratios like 80:1 and 100:1. The level of decomposition required for a multiwavelet is lesser compared to a wavelet.