Li Sun, Yang Du, Shuai Gao, Junda Ye, Feiyang Wang, Fuxin Ren, Mingchen Liang, Yue Wang, Shuhai Wang
{"title":"GroupAligner:一种基于领域自适应的深度强化学习方法","authors":"Li Sun, Yang Du, Shuai Gao, Junda Ye, Feiyang Wang, Fuxin Ren, Mingchen Liang, Yue Wang, Shuhai Wang","doi":"10.1145/3580509","DOIUrl":null,"url":null,"abstract":"Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel GroupAligner, a deep reinforcement learning with domain adaptation for social group alignment. In GroupAligner, to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed proximity-enhanced Graph Neural Network (pGNN) and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of GroupAligner. Extensive experiments on several real-world datasets are conducted to evaluate GroupAligner, and experimental results show that GroupAligner outperforms the alternative methods for social group alignment.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"17 1","pages":"1 - 30"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GroupAligner: A Deep Reinforcement Learning with Domain Adaptation for Social Group Alignment\",\"authors\":\"Li Sun, Yang Du, Shuai Gao, Junda Ye, Feiyang Wang, Fuxin Ren, Mingchen Liang, Yue Wang, Shuhai Wang\",\"doi\":\"10.1145/3580509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel GroupAligner, a deep reinforcement learning with domain adaptation for social group alignment. In GroupAligner, to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed proximity-enhanced Graph Neural Network (pGNN) and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of GroupAligner. Extensive experiments on several real-world datasets are conducted to evaluate GroupAligner, and experimental results show that GroupAligner outperforms the alternative methods for social group alignment.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"17 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580509\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580509","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GroupAligner: A Deep Reinforcement Learning with Domain Adaptation for Social Group Alignment
Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel GroupAligner, a deep reinforcement learning with domain adaptation for social group alignment. In GroupAligner, to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed proximity-enhanced Graph Neural Network (pGNN) and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of GroupAligner. Extensive experiments on several real-world datasets are conducted to evaluate GroupAligner, and experimental results show that GroupAligner outperforms the alternative methods for social group alignment.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.