{"title":"一类非线性分数阶Volterra积分方程的修正帽函数数值算法","authors":"J. Biazar, H. Ebrahimi","doi":"10.1216/jie.2022.34.295","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical algorithm via a modified hat functions (MHFs) has been proposed to solve a class of non-linear fractional Volterra integral equations of the second kind. A fractional-order operational matrix of integration is introduced. In a new methodology, the operational matrices of MHFs and the powers of weakly singular kernels of integral equations are used as a structure for transforming the main problem into a number of systems consisting of two equations for two unknowns. Relative errors for the approximated solutions are investigated. Convergence analysis of the proposed method is evaluated and convergence rate is addressed. Part ultimate, the extraordinary accuracy of the utilized approach is illustrated by a few examples. The results, absolute and relative errors are illustrated in some Tables and diagrams. In addition, a comparison is made between the absolute errors obtained by the proposed method and two other methods; one using a hybrid approach and the other applies second Chebyshev wavelet.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A numerical algorithm for a class of nonlinear fractional Volterra integral equations via modified hat functions\",\"authors\":\"J. Biazar, H. Ebrahimi\",\"doi\":\"10.1216/jie.2022.34.295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a numerical algorithm via a modified hat functions (MHFs) has been proposed to solve a class of non-linear fractional Volterra integral equations of the second kind. A fractional-order operational matrix of integration is introduced. In a new methodology, the operational matrices of MHFs and the powers of weakly singular kernels of integral equations are used as a structure for transforming the main problem into a number of systems consisting of two equations for two unknowns. Relative errors for the approximated solutions are investigated. Convergence analysis of the proposed method is evaluated and convergence rate is addressed. Part ultimate, the extraordinary accuracy of the utilized approach is illustrated by a few examples. The results, absolute and relative errors are illustrated in some Tables and diagrams. In addition, a comparison is made between the absolute errors obtained by the proposed method and two other methods; one using a hybrid approach and the other applies second Chebyshev wavelet.\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2022.34.295\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2022.34.295","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A numerical algorithm for a class of nonlinear fractional Volterra integral equations via modified hat functions
In this paper, a numerical algorithm via a modified hat functions (MHFs) has been proposed to solve a class of non-linear fractional Volterra integral equations of the second kind. A fractional-order operational matrix of integration is introduced. In a new methodology, the operational matrices of MHFs and the powers of weakly singular kernels of integral equations are used as a structure for transforming the main problem into a number of systems consisting of two equations for two unknowns. Relative errors for the approximated solutions are investigated. Convergence analysis of the proposed method is evaluated and convergence rate is addressed. Part ultimate, the extraordinary accuracy of the utilized approach is illustrated by a few examples. The results, absolute and relative errors are illustrated in some Tables and diagrams. In addition, a comparison is made between the absolute errors obtained by the proposed method and two other methods; one using a hybrid approach and the other applies second Chebyshev wavelet.
期刊介绍:
Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications.
The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field.
The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.