解部分分数阶微分方程的保形双SHEHU变换研究

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Mohamed Elarbi Benattia, K. Belghaba
{"title":"解部分分数阶微分方程的保形双SHEHU变换研究","authors":"Mohamed Elarbi Benattia, K. Belghaba","doi":"10.46939/j.sci.arts-23.2-a03","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize the concept of single conformable Sehu transformation (CSHT) to double conformable transformation (CDFSHT). Moreover, we are able to prove some theorems and properties related to this work. We apply the double conformable Sehu transform to solve the initial and boundary problems of linear and (non)homogenous conformable fractional partial differential equations (PDEs). The validity and the applicability of the proposed technique are shown by three numerical examples. Mathematica software is used for Euclidean division of polynomials and drawing graphs.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVESTIGATION OF CONFORMABLE DOUBLE SHEHU TRANSFORM FOR SOLVING SOME FRACTIONAL DIFFERENTIAL PARTIAL EQUATIONS\",\"authors\":\"Mohamed Elarbi Benattia, K. Belghaba\",\"doi\":\"10.46939/j.sci.arts-23.2-a03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize the concept of single conformable Sehu transformation (CSHT) to double conformable transformation (CDFSHT). Moreover, we are able to prove some theorems and properties related to this work. We apply the double conformable Sehu transform to solve the initial and boundary problems of linear and (non)homogenous conformable fractional partial differential equations (PDEs). The validity and the applicability of the proposed technique are shown by three numerical examples. Mathematica software is used for Euclidean division of polynomials and drawing graphs.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-23.2-a03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.2-a03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文将单保形色胡变换(CSHT)的概念推广到双保形变换(CDFSHT)。此外,我们还能够证明与这项工作有关的一些定理和性质。我们应用二重保形Sehu变换来求解线性和(非)齐次保形分数偏微分方程的初边值问题。通过三个算例验证了该方法的有效性和适用性。Mathematica软件用于多项式的欧几里得除法和绘图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATION OF CONFORMABLE DOUBLE SHEHU TRANSFORM FOR SOLVING SOME FRACTIONAL DIFFERENTIAL PARTIAL EQUATIONS
In this paper, we generalize the concept of single conformable Sehu transformation (CSHT) to double conformable transformation (CDFSHT). Moreover, we are able to prove some theorems and properties related to this work. We apply the double conformable Sehu transform to solve the initial and boundary problems of linear and (non)homogenous conformable fractional partial differential equations (PDEs). The validity and the applicability of the proposed technique are shown by three numerical examples. Mathematica software is used for Euclidean division of polynomials and drawing graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信