A. Halilu, M. Y. Waziri, A. Abdullahi, A. Majumder
{"title":"关于求解非线性方程组的双步长混合法","authors":"A. Halilu, M. Y. Waziri, A. Abdullahi, A. Majumder","doi":"10.47836/mjms.16.2.10","DOIUrl":null,"url":null,"abstract":"A hybrid derivative-free double step length technique is proposed in this work in order to enhance the numerical results and convergence properties of the double direction and step length scheme. This is accomplished by combining a Picard-Mann hybrid iterative method proposed by Khan [Fix Point Theory and Applications, pp. 1-10, vol.69 (2013)] with the double step length approach. A derivative line search is employed in order to compute the two step lengths. Furthermore, a suitable acceleration parameter is developed to approximate the Jacobian matrix. Under some mild conditions, the proposed method is shown to converge globally. The numerical experiment presented in this paper illustrates the efficiency of the proposed method over some existing methods.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hybridization of the Double Step Length Method for Solving System of Nonlinear Equations\",\"authors\":\"A. Halilu, M. Y. Waziri, A. Abdullahi, A. Majumder\",\"doi\":\"10.47836/mjms.16.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid derivative-free double step length technique is proposed in this work in order to enhance the numerical results and convergence properties of the double direction and step length scheme. This is accomplished by combining a Picard-Mann hybrid iterative method proposed by Khan [Fix Point Theory and Applications, pp. 1-10, vol.69 (2013)] with the double step length approach. A derivative line search is employed in order to compute the two step lengths. Furthermore, a suitable acceleration parameter is developed to approximate the Jacobian matrix. Under some mild conditions, the proposed method is shown to converge globally. The numerical experiment presented in this paper illustrates the efficiency of the proposed method over some existing methods.\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Hybridization of the Double Step Length Method for Solving System of Nonlinear Equations
A hybrid derivative-free double step length technique is proposed in this work in order to enhance the numerical results and convergence properties of the double direction and step length scheme. This is accomplished by combining a Picard-Mann hybrid iterative method proposed by Khan [Fix Point Theory and Applications, pp. 1-10, vol.69 (2013)] with the double step length approach. A derivative line search is employed in order to compute the two step lengths. Furthermore, a suitable acceleration parameter is developed to approximate the Jacobian matrix. Under some mild conditions, the proposed method is shown to converge globally. The numerical experiment presented in this paper illustrates the efficiency of the proposed method over some existing methods.
期刊介绍:
The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.