从法拉第和安培定律看平面波方法的双各向同性公式

R. Gauthier
{"title":"从法拉第和安培定律看平面波方法的双各向同性公式","authors":"R. Gauthier","doi":"10.4236/opj.2021.118026","DOIUrl":null,"url":null,"abstract":"The plane wave numerical technique is recast from Ampere’s and Faraday’s laws for materials that are characterized with a bianisotropic form of the constitutive relations. The populating expressions are provided for the eigenvalue matrix system that can be directly solved for the angular frequencies and field profiles when bianisotropy is included. To demonstrate the computation process and expected state diagrams and field profiles, numerical computation examples are provided for a bianisotropic Bragg Array with central defect. It is shown that the location of the magnetoelectric tensor elements has a significant effect on the eigenstates of an equivalent isotropic (anisotropic) structure. One form of the magnetoelectric tensor (diagonal elements only) leads to the observation of merging states and the formation of exceptional points. The numerical approach presented can be implemented as an add-on to the familiar plane wave numerical technique.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Bianisotropic Formulation of the Plane Wave Method from Faraday’s and Ampere’s Laws\",\"authors\":\"R. Gauthier\",\"doi\":\"10.4236/opj.2021.118026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plane wave numerical technique is recast from Ampere’s and Faraday’s laws for materials that are characterized with a bianisotropic form of the constitutive relations. The populating expressions are provided for the eigenvalue matrix system that can be directly solved for the angular frequencies and field profiles when bianisotropy is included. To demonstrate the computation process and expected state diagrams and field profiles, numerical computation examples are provided for a bianisotropic Bragg Array with central defect. It is shown that the location of the magnetoelectric tensor elements has a significant effect on the eigenstates of an equivalent isotropic (anisotropic) structure. One form of the magnetoelectric tensor (diagonal elements only) leads to the observation of merging states and the formation of exceptional points. The numerical approach presented can be implemented as an add-on to the familiar plane wave numerical technique.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2021.118026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2021.118026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

平面波数值技术是根据安培定律和法拉第定律重新制定的,适用于具有双各向同性本构关系的材料。为特征值矩阵系统提供了填充表达式,当包括双各向同性时,可以直接求解角频率和场轮廓。为了演示计算过程、预期状态图和场分布,给出了具有中心缺陷的双各向同性布拉格阵列的数值计算实例。结果表明,磁电张量单元的位置对等效各向同性(各向异性)结构的本征态有显著影响。磁电张量的一种形式(仅对角线元素)导致合并状态的观察和异常点的形成。所提出的数值方法可以作为常见平面波数值技术的附加内容来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bianisotropic Formulation of the Plane Wave Method from Faraday’s and Ampere’s Laws
The plane wave numerical technique is recast from Ampere’s and Faraday’s laws for materials that are characterized with a bianisotropic form of the constitutive relations. The populating expressions are provided for the eigenvalue matrix system that can be directly solved for the angular frequencies and field profiles when bianisotropy is included. To demonstrate the computation process and expected state diagrams and field profiles, numerical computation examples are provided for a bianisotropic Bragg Array with central defect. It is shown that the location of the magnetoelectric tensor elements has a significant effect on the eigenstates of an equivalent isotropic (anisotropic) structure. One form of the magnetoelectric tensor (diagonal elements only) leads to the observation of merging states and the formation of exceptional points. The numerical approach presented can be implemented as an add-on to the familiar plane wave numerical technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
431
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信