截断投影分辨率的同调类型

IF 0.8 4区 数学 Q2 MATHEMATICS
W. Mannan
{"title":"截断投影分辨率的同调类型","authors":"W. Mannan","doi":"10.4310/HHA.2007.v9.n2.a16","DOIUrl":null,"url":null,"abstract":"We work over an arbitrary ring R. Given two truncated projective\nresolutions of equal length for the same module, we consider\ntheir underlying chain complexes. We show they may be\nstabilized by projective modules to obtain a pair of complexes\nof the same homotopy type","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Homotopy types of truncated projective resolutions\",\"authors\":\"W. Mannan\",\"doi\":\"10.4310/HHA.2007.v9.n2.a16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We work over an arbitrary ring R. Given two truncated projective\\nresolutions of equal length for the same module, we consider\\ntheir underlying chain complexes. We show they may be\\nstabilized by projective modules to obtain a pair of complexes\\nof the same homotopy type\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2007.v9.n2.a16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/HHA.2007.v9.n2.a16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们在任意环r上工作,给定相同模的两个相等长度的截断投影解,我们考虑它们下面的链配合物。我们证明了它们可以被射影模稳定,从而得到一对相同同伦类型的配合物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy types of truncated projective resolutions
We work over an arbitrary ring R. Given two truncated projective resolutions of equal length for the same module, we consider their underlying chain complexes. We show they may be stabilized by projective modules to obtain a pair of complexes of the same homotopy type
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信