晶界突起位置对多晶硅薄膜晶体管断态电流的影响

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
JooWon Yang, Yong-Sang Kim, J. Jeon, K. Park
{"title":"晶界突起位置对多晶硅薄膜晶体管断态电流的影响","authors":"JooWon Yang, Yong-Sang Kim, J. Jeon, K. Park","doi":"10.1080/15980316.2021.1896587","DOIUrl":null,"url":null,"abstract":"ABSTRACT We report the effects of grain boundary (GB) protrusion on the off-state current (IOFF) of p-channel polycrystalline silicon thin-film transistors by using three-dimensional technology computer-aided design (TCAD) simulation. We found that the IOFF at a high drain bias, VDS = −10 V, varies more than 10 times as the position of the GB protrusion changes, whereas it varies less than two times if the GB has no protrusion, i.e. has a flat surface. The TCAD analysis showed that the IOFF was mainly caused by band-to-band tunneling and that it increased noticeably when the GB protrusion was located at a certain distance from the highly doped drain region because the GB protrusion intensified the electric field at the drain junction. We also found that the IOFF increases further when the GB line is not perpendicular to the channel direction but has some tilt angle because the GB protrusion necessarily encompassed a critical region that maximized the electric field when it was positioned within the GB protrusion.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"22 1","pages":"153 - 162"},"PeriodicalIF":3.7000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15980316.2021.1896587","citationCount":"1","resultStr":"{\"title\":\"Effects of the grain boundary protrusion position on the off-state current of polycrystalline silicon thin-film transistors\",\"authors\":\"JooWon Yang, Yong-Sang Kim, J. Jeon, K. Park\",\"doi\":\"10.1080/15980316.2021.1896587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We report the effects of grain boundary (GB) protrusion on the off-state current (IOFF) of p-channel polycrystalline silicon thin-film transistors by using three-dimensional technology computer-aided design (TCAD) simulation. We found that the IOFF at a high drain bias, VDS = −10 V, varies more than 10 times as the position of the GB protrusion changes, whereas it varies less than two times if the GB has no protrusion, i.e. has a flat surface. The TCAD analysis showed that the IOFF was mainly caused by band-to-band tunneling and that it increased noticeably when the GB protrusion was located at a certain distance from the highly doped drain region because the GB protrusion intensified the electric field at the drain junction. We also found that the IOFF increases further when the GB line is not perpendicular to the channel direction but has some tilt angle because the GB protrusion necessarily encompassed a critical region that maximized the electric field when it was positioned within the GB protrusion.\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":\"22 1\",\"pages\":\"153 - 162\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15980316.2021.1896587\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2021.1896587\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2021.1896587","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要采用三维计算机辅助设计(TCAD)模拟技术,研究了晶界(GB)突出对p沟道多晶硅薄膜晶体管断态电流(IOFF)的影响。我们发现,在高漏偏置(VDS =−10 V)下,IOFF随GB凸点位置的变化变化超过10倍,而如果GB没有凸点,即具有平坦表面,其变化小于2倍。TCAD分析表明,IOFF主要由带间隧穿引起,当GB突出物位于距离高掺杂漏极区一定距离处时,由于GB突出物增强了漏极结处的电场,IOFF显著增加。我们还发现,当GB线不垂直于通道方向,而是有一定的倾斜角时,IOFF进一步增加,因为当GB线位于GB突内时,必然包含一个使电场最大化的关键区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the grain boundary protrusion position on the off-state current of polycrystalline silicon thin-film transistors
ABSTRACT We report the effects of grain boundary (GB) protrusion on the off-state current (IOFF) of p-channel polycrystalline silicon thin-film transistors by using three-dimensional technology computer-aided design (TCAD) simulation. We found that the IOFF at a high drain bias, VDS = −10 V, varies more than 10 times as the position of the GB protrusion changes, whereas it varies less than two times if the GB has no protrusion, i.e. has a flat surface. The TCAD analysis showed that the IOFF was mainly caused by band-to-band tunneling and that it increased noticeably when the GB protrusion was located at a certain distance from the highly doped drain region because the GB protrusion intensified the electric field at the drain junction. We also found that the IOFF increases further when the GB line is not perpendicular to the channel direction but has some tilt angle because the GB protrusion necessarily encompassed a critical region that maximized the electric field when it was positioned within the GB protrusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信