A. Mishra, S. R. Barik, E. Pandit, S. Yadav, S. Das, S. Pradhan
{"title":"水稻褐飞虱抗性基因的遗传、机制及应用","authors":"A. Mishra, S. R. Barik, E. Pandit, S. Yadav, S. Das, S. Pradhan","doi":"10.1080/07352689.2022.2062906","DOIUrl":null,"url":null,"abstract":"Abstract Among the rice insects, brown planthopper (BPH), (Nilaparvata lugens Stål) is a monophagous migratory phloem-sucking insect causing severe loss in Asiatic countries. High nitrogen and willful insecticide application coupled with an increase in temperature have created havoc by this pest during the last few years in certain parts of India, Indonesia, China, Japan, Taiwan, Vietnam, and the Philippines. Though chemical control measures are advocated to mitigate this insect, yet, the incorporation of host-plant resistance factor is the preferred approach to manage this insect attack owing to the high cost of chemical control and adverse effects on the environment. To date, more than 40 major resistance genes and 22 minor genes or quantitative trait loci (QTLs) are identified. Cloning of 11 BPH resistance genes has been completed to date. Majority of the cloned genes produced coiled-coil nucleotide-binding and leucine-rich repeat protein for the defense response in the host plant. Salicylic acid, jasmonic acid, ethylene, mitogen-activated protein kinases, Ca2+, OsRac1, and other signaling molecules play a definite role in the defense response. Signal transduction may lead to sieve tube sealing, production of metabolites, and induction of proteinase inhibitor for defense response against BPH attack. Plants have intrinsic mechanisms for recognition of damage-associated and herbivore-associated molecular patterns and elicitors for host defense response. This review provides an update on the sources of resistance, identification of resistance genes, gene maps, (QTL) detection, cloning, insights into the molecular mechanisms of resistance, and deployment of resistance genes for durable and broad-spectrum resistance in the cultivars against BPH.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Genetics, Mechanisms and Deployment of Brown Planthopper Resistance Genes in Rice\",\"authors\":\"A. Mishra, S. R. Barik, E. Pandit, S. Yadav, S. Das, S. Pradhan\",\"doi\":\"10.1080/07352689.2022.2062906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Among the rice insects, brown planthopper (BPH), (Nilaparvata lugens Stål) is a monophagous migratory phloem-sucking insect causing severe loss in Asiatic countries. High nitrogen and willful insecticide application coupled with an increase in temperature have created havoc by this pest during the last few years in certain parts of India, Indonesia, China, Japan, Taiwan, Vietnam, and the Philippines. Though chemical control measures are advocated to mitigate this insect, yet, the incorporation of host-plant resistance factor is the preferred approach to manage this insect attack owing to the high cost of chemical control and adverse effects on the environment. To date, more than 40 major resistance genes and 22 minor genes or quantitative trait loci (QTLs) are identified. Cloning of 11 BPH resistance genes has been completed to date. Majority of the cloned genes produced coiled-coil nucleotide-binding and leucine-rich repeat protein for the defense response in the host plant. Salicylic acid, jasmonic acid, ethylene, mitogen-activated protein kinases, Ca2+, OsRac1, and other signaling molecules play a definite role in the defense response. Signal transduction may lead to sieve tube sealing, production of metabolites, and induction of proteinase inhibitor for defense response against BPH attack. Plants have intrinsic mechanisms for recognition of damage-associated and herbivore-associated molecular patterns and elicitors for host defense response. This review provides an update on the sources of resistance, identification of resistance genes, gene maps, (QTL) detection, cloning, insights into the molecular mechanisms of resistance, and deployment of resistance genes for durable and broad-spectrum resistance in the cultivars against BPH.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2022.2062906\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2022.2062906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genetics, Mechanisms and Deployment of Brown Planthopper Resistance Genes in Rice
Abstract Among the rice insects, brown planthopper (BPH), (Nilaparvata lugens Stål) is a monophagous migratory phloem-sucking insect causing severe loss in Asiatic countries. High nitrogen and willful insecticide application coupled with an increase in temperature have created havoc by this pest during the last few years in certain parts of India, Indonesia, China, Japan, Taiwan, Vietnam, and the Philippines. Though chemical control measures are advocated to mitigate this insect, yet, the incorporation of host-plant resistance factor is the preferred approach to manage this insect attack owing to the high cost of chemical control and adverse effects on the environment. To date, more than 40 major resistance genes and 22 minor genes or quantitative trait loci (QTLs) are identified. Cloning of 11 BPH resistance genes has been completed to date. Majority of the cloned genes produced coiled-coil nucleotide-binding and leucine-rich repeat protein for the defense response in the host plant. Salicylic acid, jasmonic acid, ethylene, mitogen-activated protein kinases, Ca2+, OsRac1, and other signaling molecules play a definite role in the defense response. Signal transduction may lead to sieve tube sealing, production of metabolites, and induction of proteinase inhibitor for defense response against BPH attack. Plants have intrinsic mechanisms for recognition of damage-associated and herbivore-associated molecular patterns and elicitors for host defense response. This review provides an update on the sources of resistance, identification of resistance genes, gene maps, (QTL) detection, cloning, insights into the molecular mechanisms of resistance, and deployment of resistance genes for durable and broad-spectrum resistance in the cultivars against BPH.
期刊介绍:
Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.