变量Lebesgue空间上b极大算子有界性的另一种方法

IF 0.7 Q2 MATHEMATICS
Esra Kaya
{"title":"变量Lebesgue空间上b极大算子有界性的另一种方法","authors":"Esra Kaya","doi":"10.31801/cfsuasmas.1030942","DOIUrl":null,"url":null,"abstract":"By using the Lp(⋅)−Lp(⋅)−boundedness of a maximal operator defined on homogeneous space, it has been shown that the B−B−maximal operator is bounded. In the present paper, we aim to bring a different approach to the boundedness of the B−B−maximal operator generated by generalized translation operator under a continuity assumption on p(⋅)p(⋅). It is noteworthy to mention that our assumption is weaker than uniform Hölder continuity.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces\",\"authors\":\"Esra Kaya\",\"doi\":\"10.31801/cfsuasmas.1030942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the Lp(⋅)−Lp(⋅)−boundedness of a maximal operator defined on homogeneous space, it has been shown that the B−B−maximal operator is bounded. In the present paper, we aim to bring a different approach to the boundedness of the B−B−maximal operator generated by generalized translation operator under a continuity assumption on p(⋅)p(⋅). It is noteworthy to mention that our assumption is weaker than uniform Hölder continuity.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1030942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1030942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

利用齐次空间上极大算子的Lp(⋅)−Lp(⋅)−有界性,证明了B−B−极大算子是有界的。在p(⋅)p(⋅)的连续性假设下,我们给出了由广义平移算子生成的B−B−极大算子的有界性的另一种方法。值得注意的是,我们的假设弱于统一Hölder连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces
By using the Lp(⋅)−Lp(⋅)−boundedness of a maximal operator defined on homogeneous space, it has been shown that the B−B−maximal operator is bounded. In the present paper, we aim to bring a different approach to the boundedness of the B−B−maximal operator generated by generalized translation operator under a continuity assumption on p(⋅)p(⋅). It is noteworthy to mention that our assumption is weaker than uniform Hölder continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信