基于自注意的低资源语音识别声学模型训练

IF 0.2 Q4 ACOUSTICS
Hosung Kim
{"title":"基于自注意的低资源语音识别声学模型训练","authors":"Hosung Kim","doi":"10.7776/ASK.2020.39.5.483","DOIUrl":null,"url":null,"abstract":"This paper proposes acoustic model training using self-attention for low-resource speech recognition. In low-resource speech recognition, it is difficult for acoustic model to distinguish certain phones. For example, plosive /d/ and /t/, plosive /g/ and /k/ and affricate /z/ and /ch/. In acoustic model training, the self-attention generates attention weights from the deep neural network model. In this study, these weights handle the similar pronunciation error for low-resource speech recognition. When the proposed method was applied to Time Delay Neural Network-Output gate Projected Gated Recurrent Unit (TNDD-OPGRU)-based acoustic model, the proposed model showed a 5.98 % word error rate. It shows absolute improvement of 0.74 % compared with TDNN-OPGRU model.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic model training using self-attention for low-resource speech recognition\",\"authors\":\"Hosung Kim\",\"doi\":\"10.7776/ASK.2020.39.5.483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes acoustic model training using self-attention for low-resource speech recognition. In low-resource speech recognition, it is difficult for acoustic model to distinguish certain phones. For example, plosive /d/ and /t/, plosive /g/ and /k/ and affricate /z/ and /ch/. In acoustic model training, the self-attention generates attention weights from the deep neural network model. In this study, these weights handle the similar pronunciation error for low-resource speech recognition. When the proposed method was applied to Time Delay Neural Network-Output gate Projected Gated Recurrent Unit (TNDD-OPGRU)-based acoustic model, the proposed model showed a 5.98 % word error rate. It shows absolute improvement of 0.74 % compared with TDNN-OPGRU model.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2020.39.5.483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.5.483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自注意的声学模型训练方法,用于低资源语音识别。在低资源语音识别中,声学模型难以区分特定的电话。例如,爆破音/d/和/t/,爆破音/g/和/k/,不灭音/z/和/ch/。在声学模型训练中,自注意从深度神经网络模型中生成注意权值。在本研究中,这些权重处理了低资源语音识别的类似发音错误。将该方法应用于基于时延神经网络输出门投影门控循环单元(TNDD-OPGRU)的声学模型,该模型的单词错误率为5.98%。与TDNN-OPGRU模型相比,该模型的绝对改进率为0.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic model training using self-attention for low-resource speech recognition
This paper proposes acoustic model training using self-attention for low-resource speech recognition. In low-resource speech recognition, it is difficult for acoustic model to distinguish certain phones. For example, plosive /d/ and /t/, plosive /g/ and /k/ and affricate /z/ and /ch/. In acoustic model training, the self-attention generates attention weights from the deep neural network model. In this study, these weights handle the similar pronunciation error for low-resource speech recognition. When the proposed method was applied to Time Delay Neural Network-Output gate Projected Gated Recurrent Unit (TNDD-OPGRU)-based acoustic model, the proposed model showed a 5.98 % word error rate. It shows absolute improvement of 0.74 % compared with TDNN-OPGRU model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信