基于copula的Bayesian多元混合泊松模型

IF 1.4 Q3 BUSINESS, FINANCE
Pengcheng Zhang, E. Calderín-Ojeda, Shuanming Li, Xueyuan Wu
{"title":"基于copula的Bayesian多元混合泊松模型","authors":"Pengcheng Zhang, E. Calderín-Ojeda, Shuanming Li, Xueyuan Wu","doi":"10.1080/10920277.2022.2112233","DOIUrl":null,"url":null,"abstract":"It is common practice to use multivariate count modeling in actuarial literature when dealing with claim counts from insurance policies with multiple covers. One possible way to construct such a model is to implement copula directly on discrete margins. However, likelihood inference under this construction involves the computation of multidimensional rectangle probabilities, which could be computationally expensive, especially in the elliptical copula case. Another potential approach is based on the multivariate mixed Poisson model. The crucial work under this method is to find an appropriate multivariate continuous distribution for mixing parameters. By virtue of the copula, this issue could be easily addressed. Under such a framework, the Markov chain Monte Carlo (MCMC) method is a feasible strategy for inference. The usefulness of our model is then illustrated through a real-life example. The empirical analysis demonstrates the superiority of adopting a copula-based mixture over other types of mixtures. Finally, we demonstrate how those fitted models can be applied to the insurance ratemaking problem in a Bayesian context.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"27 1","pages":"560 - 578"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Multivariate Mixed Poisson Models with Copula-Based Mixture\",\"authors\":\"Pengcheng Zhang, E. Calderín-Ojeda, Shuanming Li, Xueyuan Wu\",\"doi\":\"10.1080/10920277.2022.2112233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common practice to use multivariate count modeling in actuarial literature when dealing with claim counts from insurance policies with multiple covers. One possible way to construct such a model is to implement copula directly on discrete margins. However, likelihood inference under this construction involves the computation of multidimensional rectangle probabilities, which could be computationally expensive, especially in the elliptical copula case. Another potential approach is based on the multivariate mixed Poisson model. The crucial work under this method is to find an appropriate multivariate continuous distribution for mixing parameters. By virtue of the copula, this issue could be easily addressed. Under such a framework, the Markov chain Monte Carlo (MCMC) method is a feasible strategy for inference. The usefulness of our model is then illustrated through a real-life example. The empirical analysis demonstrates the superiority of adopting a copula-based mixture over other types of mixtures. Finally, we demonstrate how those fitted models can be applied to the insurance ratemaking problem in a Bayesian context.\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\"27 1\",\"pages\":\"560 - 578\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2022.2112233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2112233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在精算文献中,在处理具有多个保险范围的保险单的索赔计数时,使用多元计数建模是一种常见的做法。构造这种模型的一种可能方法是直接在离散边缘上实现联结。然而,在这种结构下的似然推断涉及到多维矩形概率的计算,这可能是计算昂贵的,特别是在椭圆联结的情况下。另一种可能的方法是基于多元混合泊松模型。该方法的关键工作是找到合适的混合参数的多元连续分布。通过联系法,这个问题可以很容易地解决。在这种框架下,马尔可夫链蒙特卡罗(MCMC)方法是一种可行的推理策略。然后通过一个现实生活中的例子来说明我们模型的有用性。实证分析表明,采用copula为基础的混合物优于其他类型的混合物。最后,我们演示了如何将这些拟合模型应用于贝叶斯背景下的保险费率制定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Multivariate Mixed Poisson Models with Copula-Based Mixture
It is common practice to use multivariate count modeling in actuarial literature when dealing with claim counts from insurance policies with multiple covers. One possible way to construct such a model is to implement copula directly on discrete margins. However, likelihood inference under this construction involves the computation of multidimensional rectangle probabilities, which could be computationally expensive, especially in the elliptical copula case. Another potential approach is based on the multivariate mixed Poisson model. The crucial work under this method is to find an appropriate multivariate continuous distribution for mixing parameters. By virtue of the copula, this issue could be easily addressed. Under such a framework, the Markov chain Monte Carlo (MCMC) method is a feasible strategy for inference. The usefulness of our model is then illustrated through a real-life example. The empirical analysis demonstrates the superiority of adopting a copula-based mixture over other types of mixtures. Finally, we demonstrate how those fitted models can be applied to the insurance ratemaking problem in a Bayesian context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信