{"title":"过渡型Coxeter 4-轨道的性状变化","authors":"Stefano Riolo, Andrea Seppi","doi":"10.4171/GGD/653","DOIUrl":null,"url":null,"abstract":"In 2010, Kerckhoff and Storm discovered a path of hyperbolic 4-polytopes eventually collapsing to an ideal right-angled cuboctahedron. This is expressed by a deformation of the inclusion of a discrete reflection group (a right-angled Coxeter group) in the isometry group of hyperbolic 4-space. More recently, we have shown that the path of polytopes can be extended to Anti-de Sitter geometry so as to have geometric transition on a naturally associated 4-orbifold, via a transitional half-pipe structure. In this paper, we study the hyperbolic, Anti-de Sitter, and half-pipe character varieties of Kerckhoff and Storm's right-angled Coxeter group near each of the found holonomy representations, including a description of the singularity that appears at the collapse. An essential tool is the study of some rigidity properties of right-angled cusp groups in dimension four.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Character varieties of a transitioning Coxeter 4-orbifold\",\"authors\":\"Stefano Riolo, Andrea Seppi\",\"doi\":\"10.4171/GGD/653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2010, Kerckhoff and Storm discovered a path of hyperbolic 4-polytopes eventually collapsing to an ideal right-angled cuboctahedron. This is expressed by a deformation of the inclusion of a discrete reflection group (a right-angled Coxeter group) in the isometry group of hyperbolic 4-space. More recently, we have shown that the path of polytopes can be extended to Anti-de Sitter geometry so as to have geometric transition on a naturally associated 4-orbifold, via a transitional half-pipe structure. In this paper, we study the hyperbolic, Anti-de Sitter, and half-pipe character varieties of Kerckhoff and Storm's right-angled Coxeter group near each of the found holonomy representations, including a description of the singularity that appears at the collapse. An essential tool is the study of some rigidity properties of right-angled cusp groups in dimension four.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/GGD/653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Character varieties of a transitioning Coxeter 4-orbifold
In 2010, Kerckhoff and Storm discovered a path of hyperbolic 4-polytopes eventually collapsing to an ideal right-angled cuboctahedron. This is expressed by a deformation of the inclusion of a discrete reflection group (a right-angled Coxeter group) in the isometry group of hyperbolic 4-space. More recently, we have shown that the path of polytopes can be extended to Anti-de Sitter geometry so as to have geometric transition on a naturally associated 4-orbifold, via a transitional half-pipe structure. In this paper, we study the hyperbolic, Anti-de Sitter, and half-pipe character varieties of Kerckhoff and Storm's right-angled Coxeter group near each of the found holonomy representations, including a description of the singularity that appears at the collapse. An essential tool is the study of some rigidity properties of right-angled cusp groups in dimension four.