通过深度特征融合的头发属性转移

Q3 Computer Science
Zhifeng Xie, Xu Su, Siwei Liu, Guisong Zhang, Lizhuang Ma
{"title":"通过深度特征融合的头发属性转移","authors":"Zhifeng Xie, Xu Su, Siwei Liu, Guisong Zhang, Lizhuang Ma","doi":"10.3724/sp.j.1089.2021.18544","DOIUrl":null,"url":null,"abstract":": To tackle the problem that existing attribute transfer methods can’t transfer hair attributes effectively, a method of hair attribute transfer based on deep feature fusion is presented. This method includes three subnetworks which are responsible for feature extraction, attribute vector extraction and image synthesis. Firstly, feature extraction network extracts features from original images, and keeps the identity of original images unchanged by adding a reconstruction loss. At the same time, attribute vector extraction network constructs the mapping model of hair features and hair attributes","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hair Attribute Transfer via Deep Feature Fusion\",\"authors\":\"Zhifeng Xie, Xu Su, Siwei Liu, Guisong Zhang, Lizhuang Ma\",\"doi\":\"10.3724/sp.j.1089.2021.18544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": To tackle the problem that existing attribute transfer methods can’t transfer hair attributes effectively, a method of hair attribute transfer based on deep feature fusion is presented. This method includes three subnetworks which are responsible for feature extraction, attribute vector extraction and image synthesis. Firstly, feature extraction network extracts features from original images, and keeps the identity of original images unchanged by adding a reconstruction loss. At the same time, attribute vector extraction network constructs the mapping model of hair features and hair attributes\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

针对现有属性传递方法不能有效传递头发属性的问题,提出了一种基于深度特征融合的头发属性传递方法。该方法包括三个子网络,分别负责特征提取、属性向量提取和图像合成。首先,特征提取网络从原始图像中提取特征,并通过添加重建损失来保持原始图像的同一性不变。同时,属性向量提取网络构建了头发特征与头发属性的映射模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hair Attribute Transfer via Deep Feature Fusion
: To tackle the problem that existing attribute transfer methods can’t transfer hair attributes effectively, a method of hair attribute transfer based on deep feature fusion is presented. This method includes three subnetworks which are responsible for feature extraction, attribute vector extraction and image synthesis. Firstly, feature extraction network extracts features from original images, and keeps the identity of original images unchanged by adding a reconstruction loss. At the same time, attribute vector extraction network constructs the mapping model of hair features and hair attributes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信