识别方法Jenis Bambu Berdasarkan Tekstur dengan方法灰度共生矩阵和灰度运行长度矩阵

Endina Putri Purwandari, Rachmi Ulizah Hasibuan, Desi Andreswari
{"title":"识别方法Jenis Bambu Berdasarkan Tekstur dengan方法灰度共生矩阵和灰度运行长度矩阵","authors":"Endina Putri Purwandari, Rachmi Ulizah Hasibuan, Desi Andreswari","doi":"10.14710/jtsiskom.6.4.2018.146-151","DOIUrl":null,"url":null,"abstract":"Bamboo species can be identified from the bamboo leaf images. This study conducted the identification of bamboo species based on leaf texture using Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) for texture feature extraction, and Euclidean distance for measure the image distance. This study used the images of bamboo species in Bengkulu province, that are bambusa Vulgaris Var Vulgaris, bambusa Multiplex, bambusa Vulgaris Var Striata, Gigantochloa Robusta, Gigantochloa Schortrchinii, Gigantochloa Serik, Schizostachyum Brachycladum, and Dendrocalamus Asper. The bamboo application was built using Matlab. The accuracy of the application was 100% for bamboo leaf test images captured using a smartphone camera and 81.25% for test images downloaded from the Internet.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix\",\"authors\":\"Endina Putri Purwandari, Rachmi Ulizah Hasibuan, Desi Andreswari\",\"doi\":\"10.14710/jtsiskom.6.4.2018.146-151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bamboo species can be identified from the bamboo leaf images. This study conducted the identification of bamboo species based on leaf texture using Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) for texture feature extraction, and Euclidean distance for measure the image distance. This study used the images of bamboo species in Bengkulu province, that are bambusa Vulgaris Var Vulgaris, bambusa Multiplex, bambusa Vulgaris Var Striata, Gigantochloa Robusta, Gigantochloa Schortrchinii, Gigantochloa Serik, Schizostachyum Brachycladum, and Dendrocalamus Asper. The bamboo application was built using Matlab. The accuracy of the application was 100% for bamboo leaf test images captured using a smartphone camera and 81.25% for test images downloaded from the Internet.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.6.4.2018.146-151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.6.4.2018.146-151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

竹叶图像可以识别竹的种类。本研究采用灰度共生矩阵(GLCM)和灰度运行长度矩阵(GLRLM)进行纹理特征提取,并用欧几里德距离度量图像距离,进行了基于叶片纹理的竹种识别。本研究利用蚌古鲁省的竹种,分别是:竹、竹、竹、竹、竹、竹、竹、竹、竹、竹、竹、竹、竹。bamboo应用程序是使用Matlab构建的。对于使用智能手机拍摄的竹叶测试图像,该应用程序的准确率为100%,对于从互联网下载的测试图像,该应用程序的准确率为81.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix
Bamboo species can be identified from the bamboo leaf images. This study conducted the identification of bamboo species based on leaf texture using Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) for texture feature extraction, and Euclidean distance for measure the image distance. This study used the images of bamboo species in Bengkulu province, that are bambusa Vulgaris Var Vulgaris, bambusa Multiplex, bambusa Vulgaris Var Striata, Gigantochloa Robusta, Gigantochloa Schortrchinii, Gigantochloa Serik, Schizostachyum Brachycladum, and Dendrocalamus Asper. The bamboo application was built using Matlab. The accuracy of the application was 100% for bamboo leaf test images captured using a smartphone camera and 81.25% for test images downloaded from the Internet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信