对流运动研究及物理参数化对WRF-ARW预报模式的影响分析

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES
G. Castorina, M. T. Caccamo, S. Magazù
{"title":"对流运动研究及物理参数化对WRF-ARW预报模式的影响分析","authors":"G. Castorina, M. T. Caccamo, S. Magazù","doi":"10.1478/AAPP.97S2A19","DOIUrl":null,"url":null,"abstract":"Optimizing the physical parametrizations of the Weather Research and Forecasting (WRF) model is one of the most challenging and complex tasks. In fact, it is not a simple operation to optimize the performance of a meteorological model capable of forecasting meteorological events, even extreme ones, in complex orographic areas such as that of Sicily. In this reference framework, the research activity of the group of meteorology and environmental modeling, established at the Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT) of the University of Messina, focuses on the development of a physical-mathematical model for the meteorological forecast. The WRF prediction model is evaluated on the ability to predict the development and evolution of a thunderstorm cell. After the definition of the domain under study and the choice of spatial resolution to be used, it was proceeded to the optimization of the physical  parametrizations. In particular, in this paper, the performance improvements of the WRF model were evaluated, obtained by optimizing the convective parametrizations. As a case study, the meteorological event recorded in Sicily on 9 June 2016 was examined.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Study of convective motions and analysis of the impact of physical parametrization on the WRF-ARW forecast model\",\"authors\":\"G. Castorina, M. T. Caccamo, S. Magazù\",\"doi\":\"10.1478/AAPP.97S2A19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the physical parametrizations of the Weather Research and Forecasting (WRF) model is one of the most challenging and complex tasks. In fact, it is not a simple operation to optimize the performance of a meteorological model capable of forecasting meteorological events, even extreme ones, in complex orographic areas such as that of Sicily. In this reference framework, the research activity of the group of meteorology and environmental modeling, established at the Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT) of the University of Messina, focuses on the development of a physical-mathematical model for the meteorological forecast. The WRF prediction model is evaluated on the ability to predict the development and evolution of a thunderstorm cell. After the definition of the domain under study and the choice of spatial resolution to be used, it was proceeded to the optimization of the physical  parametrizations. In particular, in this paper, the performance improvements of the WRF model were evaluated, obtained by optimizing the convective parametrizations. As a case study, the meteorological event recorded in Sicily on 9 June 2016 was examined.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.97S2A19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S2A19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 9

摘要

优化天气研究和预报(WRF)模型的物理参数是最具挑战性和最复杂的任务之一。事实上,优化能够预测西西里岛等复杂地形地区的气象事件,甚至是极端气象事件的气象模型的性能并不是一项简单的操作。在这一参考框架中,梅西纳大学数学与计算机科学、物理科学和地球科学系成立的气象和环境建模小组的研究活动侧重于开发气象预报的物理数学模型。WRF预测模型对雷暴单元的发展和演化进行了预测能力评估。在定义了所研究的领域并选择了要使用的空间分辨率后,对物理参数进行了优化。特别是,在本文中,通过优化对流参数化,评估了WRF模型的性能改进。作为案例研究,对2016年6月9日西西里岛记录的气象事件进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of convective motions and analysis of the impact of physical parametrization on the WRF-ARW forecast model
Optimizing the physical parametrizations of the Weather Research and Forecasting (WRF) model is one of the most challenging and complex tasks. In fact, it is not a simple operation to optimize the performance of a meteorological model capable of forecasting meteorological events, even extreme ones, in complex orographic areas such as that of Sicily. In this reference framework, the research activity of the group of meteorology and environmental modeling, established at the Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT) of the University of Messina, focuses on the development of a physical-mathematical model for the meteorological forecast. The WRF prediction model is evaluated on the ability to predict the development and evolution of a thunderstorm cell. After the definition of the domain under study and the choice of spatial resolution to be used, it was proceeded to the optimization of the physical  parametrizations. In particular, in this paper, the performance improvements of the WRF model were evaluated, obtained by optimizing the convective parametrizations. As a case study, the meteorological event recorded in Sicily on 9 June 2016 was examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
31 weeks
期刊介绍: This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信