罗宾平板第二特征值的尖锐等周不等式

IF 1 3区 数学 Q1 MATHEMATICS
L. Chasman, J. Langford
{"title":"罗宾平板第二特征值的尖锐等周不等式","authors":"L. Chasman, J. Langford","doi":"10.4171/jst/413","DOIUrl":null,"url":null,"abstract":"Among all $C^{\\infty}$ bounded domains with equal volume, we show that the second eigenvalue of the Robin plate is uniquely maximized by an open ball, so long as the Robin parameter lies within a particular range of negative values. Our methodology combines recent techniques introduced by Freitas and Laugesen to study the second eigenvalue of the Robin membrane problem and techniques employed by Chasman to study the free plate problem. In particular, we choose eigenfunctions of the ball as trial functions in the Rayleigh quotient for a general domain; such eigenfunctions are comprised of ultraspherical Bessel and modified Bessel functions. Much of our work hinges on developing an understanding of delicate properties of these special functions, which may be of independent interest.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A sharp isoperimetric inequality for the second eigenvalue of the Robin plate\",\"authors\":\"L. Chasman, J. Langford\",\"doi\":\"10.4171/jst/413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among all $C^{\\\\infty}$ bounded domains with equal volume, we show that the second eigenvalue of the Robin plate is uniquely maximized by an open ball, so long as the Robin parameter lies within a particular range of negative values. Our methodology combines recent techniques introduced by Freitas and Laugesen to study the second eigenvalue of the Robin membrane problem and techniques employed by Chasman to study the free plate problem. In particular, we choose eigenfunctions of the ball as trial functions in the Rayleigh quotient for a general domain; such eigenfunctions are comprised of ultraspherical Bessel and modified Bessel functions. Much of our work hinges on developing an understanding of delicate properties of these special functions, which may be of independent interest.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/413\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/413","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在所有体积相等的$C^{\infty}$有界域中,我们证明了只要Robin参数位于负值的特定范围内,Robin板的第二特征值就被开球唯一地最大化。我们的方法结合了Freitas和Laugesen最近引入的研究Robin膜问题第二特征值的技术和Chasman研究自由板问题的技术。特别地,我们选择球的本征函数作为一般域的瑞利商中的试验函数;这种本征函数由超球面贝塞尔函数和修正的贝塞尔函数组成。我们的大部分工作都取决于对这些特殊函数的微妙性质的理解,这可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sharp isoperimetric inequality for the second eigenvalue of the Robin plate
Among all $C^{\infty}$ bounded domains with equal volume, we show that the second eigenvalue of the Robin plate is uniquely maximized by an open ball, so long as the Robin parameter lies within a particular range of negative values. Our methodology combines recent techniques introduced by Freitas and Laugesen to study the second eigenvalue of the Robin membrane problem and techniques employed by Chasman to study the free plate problem. In particular, we choose eigenfunctions of the ball as trial functions in the Rayleigh quotient for a general domain; such eigenfunctions are comprised of ultraspherical Bessel and modified Bessel functions. Much of our work hinges on developing an understanding of delicate properties of these special functions, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信