由Hölder噪声驱动的无界漂移夹层sde

Pub Date : 2020-12-21 DOI:10.1017/apr.2022.56
G. di Nunno, Y. Mishura, Anton Yurchenko-Tytarenko
{"title":"由Hölder噪声驱动的无界漂移夹层sde","authors":"G. di Nunno, Y. Mishura, Anton Yurchenko-Tytarenko","doi":"10.1017/apr.2022.56","DOIUrl":null,"url":null,"abstract":"Abstract We study a stochastic differential equation with an unbounded drift and general Hölder continuous noise of order \n$\\lambda \\in (0,1)$\n . The corresponding equation turns out to have a unique solution that, depending on a particular shape of the drift, either stays above some continuous function or has continuous upper and lower bounds. Under some mild assumptions on the noise, we prove that the solution has moments of all orders. In addition, we provide its connection to the solution of some Skorokhod reflection problem. As an illustration of our results and motivation for applications, we also suggest two stochastic volatility models which we regard as generalizations of the CIR and CEV processes. We complete the study by providing a numerical scheme for the solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sandwiched SDEs with unbounded drift driven by Hölder noises\",\"authors\":\"G. di Nunno, Y. Mishura, Anton Yurchenko-Tytarenko\",\"doi\":\"10.1017/apr.2022.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a stochastic differential equation with an unbounded drift and general Hölder continuous noise of order \\n$\\\\lambda \\\\in (0,1)$\\n . The corresponding equation turns out to have a unique solution that, depending on a particular shape of the drift, either stays above some continuous function or has continuous upper and lower bounds. Under some mild assumptions on the noise, we prove that the solution has moments of all orders. In addition, we provide its connection to the solution of some Skorokhod reflection problem. As an illustration of our results and motivation for applications, we also suggest two stochastic volatility models which we regard as generalizations of the CIR and CEV processes. We complete the study by providing a numerical scheme for the solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2022.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要我们研究了一个具有无界漂移和广义Hölder连续噪声的随机微分方程,其阶为$\lambda\in(0,1)$。相应的方程有一个独特的解,根据漂移的特定形状,它要么保持在某个连续函数之上,要么具有连续的上界和下界。在对噪声的一些温和假设下,我们证明了解具有所有阶矩。此外,我们还提供了它与某些Skorokhod反射问题的解的联系。为了说明我们的结果和应用动机,我们还提出了两个随机波动率模型,我们将其视为CIR和CEV过程的推广。我们通过提供解的数值格式来完成研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sandwiched SDEs with unbounded drift driven by Hölder noises
Abstract We study a stochastic differential equation with an unbounded drift and general Hölder continuous noise of order $\lambda \in (0,1)$ . The corresponding equation turns out to have a unique solution that, depending on a particular shape of the drift, either stays above some continuous function or has continuous upper and lower bounds. Under some mild assumptions on the noise, we prove that the solution has moments of all orders. In addition, we provide its connection to the solution of some Skorokhod reflection problem. As an illustration of our results and motivation for applications, we also suggest two stochastic volatility models which we regard as generalizations of the CIR and CEV processes. We complete the study by providing a numerical scheme for the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信