研究了地形卫星影像中平移锐化对土地覆盖制图精度的影响

Q4 Earth and Planetary Sciences
K. Rokni
{"title":"研究了地形卫星影像中平移锐化对土地覆盖制图精度的影响","authors":"K. Rokni","doi":"10.3846/gac.2023.15308","DOIUrl":null,"url":null,"abstract":"Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose.","PeriodicalId":35691,"journal":{"name":"Geodeziya i Kartografiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"INVESTIGATING THE IMPACT OF PAN SHARPENING ON THE ACCURACY OF LAND COVER MAPPING IN LANDSAT OLI IMAGERY\",\"authors\":\"K. Rokni\",\"doi\":\"10.3846/gac.2023.15308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose.\",\"PeriodicalId\":35691,\"journal\":{\"name\":\"Geodeziya i Kartografiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodeziya i Kartografiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/gac.2023.15308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodeziya i Kartografiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/gac.2023.15308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3

摘要

泛锐化通常是利用分辨率较高的全色图像锐化低分辨率的多光谱图像,生成高分辨率的多光谱图像。本研究旨在评估Pan Sharpening在提高Landsat 8 OLI图像分类和土地覆盖制图精度方面的作用。为此,采用Brovey、Gram-Schmidt、NNDiffuse和Principal Components等不同的Pan Sharpening算法,将Landsat OLI全色波段(15 m)与Landsat OLI多光谱进行合并:然后,利用支持向量机方法对原始Landsat图像和得到的Pan Sharpened图像进行分类,生成研究区域的土地覆被图。然后通过生成混淆矩阵、计算kappa系数和总体准确率对结果进行比较。结果表明,NNDiffuse算法在Landsat OLI图像的Pan Sharpening和分类精度提高方面具有优势,总体精度约为98.66%,kappa系数约为0.98。此外,Gram-Schmidt和主成分算法的图像分类精度也比原始Landsat图像略有提高。研究得出结论,图像Pan Sharpening有助于提高Landsat OLI图像的图像分类精度,具体取决于使用的Pan Sharpening算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATING THE IMPACT OF PAN SHARPENING ON THE ACCURACY OF LAND COVER MAPPING IN LANDSAT OLI IMAGERY
Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodeziya i Kartografiya
Geodeziya i Kartografiya Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.60
自引率
0.00%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信