{"title":"由分数阶布朗运动驱动的中性随机泛函积分微分方程的全局吸引集","authors":"A. Bakka, S. Hajji, D. Kiouach","doi":"10.1515/rose-2021-2058","DOIUrl":null,"url":null,"abstract":"Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\\in(\\frac{1}{2},1)} in a Hilbert space.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"29 1","pages":"149 - 159"},"PeriodicalIF":0.3000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2021-2058","citationCount":"0","resultStr":"{\"title\":\"Global attracting sets of neutral stochastic functional integro-differential equations driven by a fractional Brownian motion\",\"authors\":\"A. Bakka, S. Hajji, D. Kiouach\",\"doi\":\"10.1515/rose-2021-2058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\\\\in(\\\\frac{1}{2},1)} in a Hilbert space.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"29 1\",\"pages\":\"149 - 159\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2021-2058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Global attracting sets of neutral stochastic functional integro-differential equations driven by a fractional Brownian motion
Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.