贝叶斯双变量空间共享分量模型:绘制巴西南部癌症乳腺癌和宫颈癌死亡率

IF 1.1 Q3 STATISTICS & PROBABILITY
E. Martinez, Diego Gafuri Silva, Larissa Intrebartoli Resende, Elisângela Aparecida da Silva Lizzi, J. Achcar
{"title":"贝叶斯双变量空间共享分量模型:绘制巴西南部癌症乳腺癌和宫颈癌死亡率","authors":"E. Martinez, Diego Gafuri Silva, Larissa Intrebartoli Resende, Elisângela Aparecida da Silva Lizzi, J. Achcar","doi":"10.18187/pjsor.v18i4.4095","DOIUrl":null,"url":null,"abstract":"Spatial analysis techniques are used in the data analysis of ecological studies, which consider geographical areas as observation units. In this article, we propose a Bayesian bivariate spatial shared component model to mapping the breast and cervical cancer mortality in Southern Brazil, based on the models introduced by Knorr-Held and Best (2001) and Held et al. (2005). Markov Chain Monte Carlo (MCMC) methods were used to spatially smooth the standardized mortality ratios (SMR) for both diseases. Local Indicator of Spatial Association (LISA) was used to verify the existence of spatial clusters in specific geographical areas. This study was carried out using secondary data obtained from publicly available health information systems.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian bivariate spatial shared component model: mapping breast and cervical cancer mortality in Southern Brazil\",\"authors\":\"E. Martinez, Diego Gafuri Silva, Larissa Intrebartoli Resende, Elisângela Aparecida da Silva Lizzi, J. Achcar\",\"doi\":\"10.18187/pjsor.v18i4.4095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial analysis techniques are used in the data analysis of ecological studies, which consider geographical areas as observation units. In this article, we propose a Bayesian bivariate spatial shared component model to mapping the breast and cervical cancer mortality in Southern Brazil, based on the models introduced by Knorr-Held and Best (2001) and Held et al. (2005). Markov Chain Monte Carlo (MCMC) methods were used to spatially smooth the standardized mortality ratios (SMR) for both diseases. Local Indicator of Spatial Association (LISA) was used to verify the existence of spatial clusters in specific geographical areas. This study was carried out using secondary data obtained from publicly available health information systems.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i4.4095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i4.4095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

空间分析技术用于生态研究的数据分析,将地理区域视为观测单位。在这篇文章中,我们基于Knorr-Held和Best(2001)以及Held等人(2005)引入的模型,提出了一个贝叶斯双变量空间共享分量模型来绘制巴西南部乳腺癌和宫颈癌癌症死亡率。Markov Chain Monte Carlo(MCMC)方法用于对两种疾病的标准化死亡率(SMR)进行空间平滑。空间关联局部指标(LISA)用于验证特定地理区域中空间集群的存在。这项研究是利用从公共卫生信息系统获得的二次数据进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian bivariate spatial shared component model: mapping breast and cervical cancer mortality in Southern Brazil
Spatial analysis techniques are used in the data analysis of ecological studies, which consider geographical areas as observation units. In this article, we propose a Bayesian bivariate spatial shared component model to mapping the breast and cervical cancer mortality in Southern Brazil, based on the models introduced by Knorr-Held and Best (2001) and Held et al. (2005). Markov Chain Monte Carlo (MCMC) methods were used to spatially smooth the standardized mortality ratios (SMR) for both diseases. Local Indicator of Spatial Association (LISA) was used to verify the existence of spatial clusters in specific geographical areas. This study was carried out using secondary data obtained from publicly available health information systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信