弱单位阿基米德格序群中Hull算子的一些改进

IF 0.6 4区 数学 Q3 MATHEMATICS
Ricardo E. Carrera, Anthony W. Hager
{"title":"弱单位阿基米德格序群中Hull算子的一些改进","authors":"Ricardo E. Carrera,&nbsp;Anthony W. Hager","doi":"10.1007/s10485-023-09710-7","DOIUrl":null,"url":null,"abstract":"<div><p><span>\\({\\textbf {W}}\\)</span> denotes the category, or class of algebras, in the title. A hull operator (ho) in <span>\\({\\textbf {W}}\\)</span> is a function <span>\\(\\textbf{ho} {\\textbf {W}}\\overset{h}{\\longrightarrow }\\ {\\textbf {W}}\\)</span> which can be called an essential closure operator. The family of these, denoted <span>\\(\\textbf{ho} {\\textbf {W}}\\)</span>, is a proper class and a complete lattice in the ordering as functions “pointwise\", with the bottom <span>\\({{\\,\\textrm{Id}\\,}}_{{\\textbf {W}}}\\)</span> and top Conrad’s essential completion <i>e</i>. Other much studied hull operators are the divisible hull, maximum essential reflection, projectable hull, and Dedekind completion. This paper is the authors’ latest efforts to understand/create structure in <span>\\(\\textbf{ho} {\\textbf {W}}\\)</span> through the nature of the interaction that an <i>h</i> might have with <i>B</i>, the bounded monocoreflection in <span>\\({\\textbf {W}}\\)</span> (e.g., Bh=hB). We define and investigate three functions <span>\\(\\textbf{ho} {\\textbf {W}}\\longrightarrow \\textbf{ho} {\\textbf {W}}\\)</span> which stand in the relation </p><div><div><span>$$\\begin{aligned} {{\\,\\textrm{Id}\\,}}_{{\\textbf {W}}} \\le \\overline{\\alpha }(h) \\le \\overline{\\lambda }(h) \\le \\overline{c}(h) \\le h. \\end{aligned}$$</span></div></div><p>General properties that an <i>h</i> might have, and particular choices of <i>h</i>, show various assignments of &lt; and <span>\\(=\\)</span> in this chain.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09710-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Some Modifications of Hull Operators in Archimedean Lattice-Ordered Groups with Weak Unit\",\"authors\":\"Ricardo E. Carrera,&nbsp;Anthony W. Hager\",\"doi\":\"10.1007/s10485-023-09710-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>\\\\({\\\\textbf {W}}\\\\)</span> denotes the category, or class of algebras, in the title. A hull operator (ho) in <span>\\\\({\\\\textbf {W}}\\\\)</span> is a function <span>\\\\(\\\\textbf{ho} {\\\\textbf {W}}\\\\overset{h}{\\\\longrightarrow }\\\\ {\\\\textbf {W}}\\\\)</span> which can be called an essential closure operator. The family of these, denoted <span>\\\\(\\\\textbf{ho} {\\\\textbf {W}}\\\\)</span>, is a proper class and a complete lattice in the ordering as functions “pointwise\\\", with the bottom <span>\\\\({{\\\\,\\\\textrm{Id}\\\\,}}_{{\\\\textbf {W}}}\\\\)</span> and top Conrad’s essential completion <i>e</i>. Other much studied hull operators are the divisible hull, maximum essential reflection, projectable hull, and Dedekind completion. This paper is the authors’ latest efforts to understand/create structure in <span>\\\\(\\\\textbf{ho} {\\\\textbf {W}}\\\\)</span> through the nature of the interaction that an <i>h</i> might have with <i>B</i>, the bounded monocoreflection in <span>\\\\({\\\\textbf {W}}\\\\)</span> (e.g., Bh=hB). We define and investigate three functions <span>\\\\(\\\\textbf{ho} {\\\\textbf {W}}\\\\longrightarrow \\\\textbf{ho} {\\\\textbf {W}}\\\\)</span> which stand in the relation </p><div><div><span>$$\\\\begin{aligned} {{\\\\,\\\\textrm{Id}\\\\,}}_{{\\\\textbf {W}}} \\\\le \\\\overline{\\\\alpha }(h) \\\\le \\\\overline{\\\\lambda }(h) \\\\le \\\\overline{c}(h) \\\\le h. \\\\end{aligned}$$</span></div></div><p>General properties that an <i>h</i> might have, and particular choices of <i>h</i>, show various assignments of &lt; and <span>\\\\(=\\\\)</span> in this chain.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-023-09710-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09710-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09710-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

\({\textbf {W}}\) 在题目中表示代数的范畴或类。\({\textbf {W}}\)中的船体操作符(ho)是一个函数\(\textbf{ho} {\textbf {W}}\overset{h}{\longrightarrow }\ {\textbf {W}}\),它可以称为基本闭包操作符。它们的家族,表示\(\textbf{ho} {\textbf {W}}\),是一个适当的类和一个完整的晶格,以函数“点向”排序,底部\({{\,\textrm{Id}\,}}_{{\textbf {W}}}\)和顶部Conrad的基本完井e。其他研究较多的船体算子是可分船体,最大基本反射,可投射船体和Dedekind完井。本文是作者通过在\({\textbf {W}}\)(例如,Bh=hB)中h可能与B的有界单反射的相互作用的性质来理解/创建\(\textbf{ho} {\textbf {W}}\)中的结构的最新努力。我们定义并研究了三个函数\(\textbf{ho} {\textbf {W}}\longrightarrow \textbf{ho} {\textbf {W}}\),它们站在关系中$$\begin{aligned} {{\,\textrm{Id}\,}}_{{\textbf {W}}} \le \overline{\alpha }(h) \le \overline{\lambda }(h) \le \overline{c}(h) \le h. \end{aligned}$$ h可能具有的一般性质,以及h的特定选择,显示了&lt的各种赋值;这个链中的\(=\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Modifications of Hull Operators in Archimedean Lattice-Ordered Groups with Weak Unit

\({\textbf {W}}\) denotes the category, or class of algebras, in the title. A hull operator (ho) in \({\textbf {W}}\) is a function \(\textbf{ho} {\textbf {W}}\overset{h}{\longrightarrow }\ {\textbf {W}}\) which can be called an essential closure operator. The family of these, denoted \(\textbf{ho} {\textbf {W}}\), is a proper class and a complete lattice in the ordering as functions “pointwise", with the bottom \({{\,\textrm{Id}\,}}_{{\textbf {W}}}\) and top Conrad’s essential completion e. Other much studied hull operators are the divisible hull, maximum essential reflection, projectable hull, and Dedekind completion. This paper is the authors’ latest efforts to understand/create structure in \(\textbf{ho} {\textbf {W}}\) through the nature of the interaction that an h might have with B, the bounded monocoreflection in \({\textbf {W}}\) (e.g., Bh=hB). We define and investigate three functions \(\textbf{ho} {\textbf {W}}\longrightarrow \textbf{ho} {\textbf {W}}\) which stand in the relation

$$\begin{aligned} {{\,\textrm{Id}\,}}_{{\textbf {W}}} \le \overline{\alpha }(h) \le \overline{\lambda }(h) \le \overline{c}(h) \le h. \end{aligned}$$

General properties that an h might have, and particular choices of h, show various assignments of < and \(=\) in this chain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信