关于复微分差分方程整体解的极限方向

Pub Date : 2023-03-31 DOI:10.1007/s10476-023-0213-7
H. X. Dai, J. Y. Qiao, T. B. Cao
{"title":"关于复微分差分方程整体解的极限方向","authors":"H. X. Dai,&nbsp;J. Y. Qiao,&nbsp;T. B. Cao","doi":"10.1007/s10476-023-0213-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation <span>\\({f^n}(z) + \\sum\\limits_{k = 0}^n {{a_{{\\lambda _k}}}(z){p_{{\\lambda _k}}}(z,f) = h(z),} \\)</span> where <span>\\({p_{{\\lambda _k}}}(z,f)\\,\\,\\,(\\lambda \\in \\mathbb{N})\\)</span> are distinct differential-difference monomials, <span>\\({a_{{\\lambda _k}}}(z)\\)</span> are entire functions of growth smaller than that of the transcendental entire <i>h</i>(<i>z</i>). For non-trivial entire solutions <i>f</i> of differential-difference equation <span>\\({P_2}(z,f) + {A_1}(z){P_1}(z,f) + {A_0}(z) = 0,\\)</span> where <i>P</i><sub>λ</sub>(<i>z,f</i>)(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of <i>f</i> was studied.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0213-7.pdf","citationCount":"1","resultStr":"{\"title\":\"On limiting directions of entire solutions of complex differential-difference equations\",\"authors\":\"H. X. Dai,&nbsp;J. Y. Qiao,&nbsp;T. B. Cao\",\"doi\":\"10.1007/s10476-023-0213-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation <span>\\\\({f^n}(z) + \\\\sum\\\\limits_{k = 0}^n {{a_{{\\\\lambda _k}}}(z){p_{{\\\\lambda _k}}}(z,f) = h(z),} \\\\)</span> where <span>\\\\({p_{{\\\\lambda _k}}}(z,f)\\\\,\\\\,\\\\,(\\\\lambda \\\\in \\\\mathbb{N})\\\\)</span> are distinct differential-difference monomials, <span>\\\\({a_{{\\\\lambda _k}}}(z)\\\\)</span> are entire functions of growth smaller than that of the transcendental entire <i>h</i>(<i>z</i>). For non-trivial entire solutions <i>f</i> of differential-difference equation <span>\\\\({P_2}(z,f) + {A_1}(z){P_1}(z,f) + {A_0}(z) = 0,\\\\)</span> where <i>P</i><sub>λ</sub>(<i>z,f</i>)(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of <i>f</i> was studied.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0213-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0213-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0213-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要得到了微分差分方程非平凡超越全解的Jackson差分算子的Julia极限方向和超越方向的测度({f^n}(z)+\sum\limits_{k=0}^n{a_{λ_k}}(z){p_{λ_ k}}(z,f)=h(z),}),其中,(\lambda\in\mathbb{N})\)是不同的微分差分单项式,\({a_{\lambda_k}})}(z)\)为小于超越整h(z)的增长全函数。对于微分差分方程的非平凡全解f({P_2}(z,f)+{A_1}(z){P_1}(z,f)+{A_0}(z。通过考虑与Petrenko偏差相关的整个系数,研究了f的经典差分算子和Jackson差分算子的公共超越方向的测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On limiting directions of entire solutions of complex differential-difference equations

In this article, we mainly obtain the measure of Julia limiting directions and transcendental directions of Jackson difference operators of non-trivial transcendental entire solutions for differential-difference equation \({f^n}(z) + \sum\limits_{k = 0}^n {{a_{{\lambda _k}}}(z){p_{{\lambda _k}}}(z,f) = h(z),} \) where \({p_{{\lambda _k}}}(z,f)\,\,\,(\lambda \in \mathbb{N})\) are distinct differential-difference monomials, \({a_{{\lambda _k}}}(z)\) are entire functions of growth smaller than that of the transcendental entire h(z). For non-trivial entire solutions f of differential-difference equation \({P_2}(z,f) + {A_1}(z){P_1}(z,f) + {A_0}(z) = 0,\) where Pλ(z,f)(λ = 1, 2) are differential-difference polynomials. By considering the entire coefficient associated with Petrenko’s deviation, the measure of common transcendental directions of classical difference operators and Jackson difference operators of f was studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信