痴呆诊断中几乎相同动作的自动记录

Q2 Health Professions
Sergio Staab, Lukas Bröning, Johannes Luderschmidt, Ludger Martin
{"title":"痴呆诊断中几乎相同动作的自动记录","authors":"Sergio Staab,&nbsp;Lukas Bröning,&nbsp;Johannes Luderschmidt,&nbsp;Ludger Martin","doi":"10.1016/j.smhl.2022.100333","DOIUrl":null,"url":null,"abstract":"<div><p><span>When monitoring the health state of people with neurological diseases, it is crucial to detect </span>disease progression and disease-related changes as soon as possible. Such changes can be detected in the performance of everyday activities like eating, drinking, nose blowing, reading, looking at photos, knitting, telephoning, or brushing hair.</p><p>In order to supervise such everyday activities, this work proposes an approach employing smartwatches in combination with a Recurrent neural network. A smartwatch offers the possibility of integrating sensor technology into a patient’s daily routines in a unobtrusive way.</p><p>We have developed a machine learning<span><span> web tool to track motion data using smartwatch sensors. Data from the accelerometer, heart rate sensor, gyroscope, gravity sensor and </span>position sensor are tracked at 20 Hz. Our tool allows a systematic comparison of the performance between a Long Short-Term Memory (LSTM) model and the different sensor systems in classifying twelve nearly identical daily activities.</span></p><p>In this paper, we address the problem of caregiver effort in creating daily care documentation for dementia patients. We present an activity classification system that enables automatic classification of daily activities of patients with dementia across a nursing shift. To assist caregivers, we provide an idea for integrating our system into a nursing documentation.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"26 ","pages":"Article 100333"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated documentation of almost identical movements in the context of dementia diagnostics\",\"authors\":\"Sergio Staab,&nbsp;Lukas Bröning,&nbsp;Johannes Luderschmidt,&nbsp;Ludger Martin\",\"doi\":\"10.1016/j.smhl.2022.100333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>When monitoring the health state of people with neurological diseases, it is crucial to detect </span>disease progression and disease-related changes as soon as possible. Such changes can be detected in the performance of everyday activities like eating, drinking, nose blowing, reading, looking at photos, knitting, telephoning, or brushing hair.</p><p>In order to supervise such everyday activities, this work proposes an approach employing smartwatches in combination with a Recurrent neural network. A smartwatch offers the possibility of integrating sensor technology into a patient’s daily routines in a unobtrusive way.</p><p>We have developed a machine learning<span><span> web tool to track motion data using smartwatch sensors. Data from the accelerometer, heart rate sensor, gyroscope, gravity sensor and </span>position sensor are tracked at 20 Hz. Our tool allows a systematic comparison of the performance between a Long Short-Term Memory (LSTM) model and the different sensor systems in classifying twelve nearly identical daily activities.</span></p><p>In this paper, we address the problem of caregiver effort in creating daily care documentation for dementia patients. We present an activity classification system that enables automatic classification of daily activities of patients with dementia across a nursing shift. To assist caregivers, we provide an idea for integrating our system into a nursing documentation.</p></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"26 \",\"pages\":\"Article 100333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648322000678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648322000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1

摘要

在监测神经系统疾病患者的健康状况时,尽早发现疾病进展和疾病相关变化至关重要。这些变化可以在日常活动的表现中检测到,比如吃饭、喝水、擤鼻涕、阅读、看照片、编织、打电话或梳头。为了监督这些日常活动,这项工作提出了一种将智能手表与循环神经网络相结合的方法。智能手表提供了将传感器技术以一种不引人注目的方式整合到患者日常生活中的可能性。我们开发了一种机器学习网络工具,可以使用智能手表传感器跟踪运动数据。来自加速度计、心率传感器、陀螺仪、重力传感器和位置传感器的数据以20赫兹的频率跟踪。我们的工具允许系统地比较长短期记忆(LSTM)模型和不同的传感器系统在分类12个几乎相同的日常活动中的表现。在本文中,我们解决的问题,照顾者的努力在创建日常护理文件为痴呆症患者。我们提出了一个活动分类系统,使痴呆症患者的日常活动的自动分类跨越护理班次。为了帮助护理人员,我们提供了一个将我们的系统集成到护理文档中的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated documentation of almost identical movements in the context of dementia diagnostics

Automated documentation of almost identical movements in the context of dementia diagnostics

When monitoring the health state of people with neurological diseases, it is crucial to detect disease progression and disease-related changes as soon as possible. Such changes can be detected in the performance of everyday activities like eating, drinking, nose blowing, reading, looking at photos, knitting, telephoning, or brushing hair.

In order to supervise such everyday activities, this work proposes an approach employing smartwatches in combination with a Recurrent neural network. A smartwatch offers the possibility of integrating sensor technology into a patient’s daily routines in a unobtrusive way.

We have developed a machine learning web tool to track motion data using smartwatch sensors. Data from the accelerometer, heart rate sensor, gyroscope, gravity sensor and position sensor are tracked at 20 Hz. Our tool allows a systematic comparison of the performance between a Long Short-Term Memory (LSTM) model and the different sensor systems in classifying twelve nearly identical daily activities.

In this paper, we address the problem of caregiver effort in creating daily care documentation for dementia patients. We present an activity classification system that enables automatic classification of daily activities of patients with dementia across a nursing shift. To assist caregivers, we provide an idea for integrating our system into a nursing documentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信