扑翼微型飞行器尾迹和尾翼空气动力学建模

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
S. Armanini, J. Caetano, C. D. de Visser, M. Pavel, G. de Croon, M. Mulder
{"title":"扑翼微型飞行器尾迹和尾翼空气动力学建模","authors":"S. Armanini, J. Caetano, C. D. de Visser, M. Pavel, G. de Croon, M. Mulder","doi":"10.1177/1756829319833674","DOIUrl":null,"url":null,"abstract":"Despite significant interest in tailless flapping-wing micro aerial vehicle designs, tailed configurations are often favoured, as they offer many benefits, such as static stability and a simpler control strategy, separating wing and tail control. However, the tail aerodynamics are highly complex due to the interaction between the unsteady wing wake and tail, which is generally not modelled explicitly. We propose an approach to model the flapping-wing wake and hence the tail aerodynamics of a tailed flapping-wing robot. First, the wake is modelled as a periodic function depending on wing flap phase and position with respect to the wings. The wake model is constructed out of six low-order sub-models representing the mean, amplitude and phase of the tangential and vertical velocity components. The parameters in each sub-model are estimated from stereo-particle image velocimetry measurements using an identification method based on multivariate simplex splines. The computed model represents the measured wake with high accuracy, is computationally manageable and is applicable to a range of different tail geometries. The wake model is then used within a quasi-steady aerodynamic model, and combined with the effect of free-stream velocity, to estimate the forces produced by the tail. The results provide a basis for further modelling, simulation and design work, and yield insight into the role of the tail and its interaction with the wing wake in flapping-wing vehicles. It was found that due to the effect of the wing wake, the velocity seen by the tail is of a similar magnitude as the free stream and that the tail is most effective at 50–70% of its span.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319833674","citationCount":"12","resultStr":"{\"title\":\"Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle\",\"authors\":\"S. Armanini, J. Caetano, C. D. de Visser, M. Pavel, G. de Croon, M. Mulder\",\"doi\":\"10.1177/1756829319833674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant interest in tailless flapping-wing micro aerial vehicle designs, tailed configurations are often favoured, as they offer many benefits, such as static stability and a simpler control strategy, separating wing and tail control. However, the tail aerodynamics are highly complex due to the interaction between the unsteady wing wake and tail, which is generally not modelled explicitly. We propose an approach to model the flapping-wing wake and hence the tail aerodynamics of a tailed flapping-wing robot. First, the wake is modelled as a periodic function depending on wing flap phase and position with respect to the wings. The wake model is constructed out of six low-order sub-models representing the mean, amplitude and phase of the tangential and vertical velocity components. The parameters in each sub-model are estimated from stereo-particle image velocimetry measurements using an identification method based on multivariate simplex splines. The computed model represents the measured wake with high accuracy, is computationally manageable and is applicable to a range of different tail geometries. The wake model is then used within a quasi-steady aerodynamic model, and combined with the effect of free-stream velocity, to estimate the forces produced by the tail. The results provide a basis for further modelling, simulation and design work, and yield insight into the role of the tail and its interaction with the wing wake in flapping-wing vehicles. It was found that due to the effect of the wing wake, the velocity seen by the tail is of a similar magnitude as the free stream and that the tail is most effective at 50–70% of its span.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829319833674\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829319833674\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829319833674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 12

摘要

尽管人们对无尾扑翼微型飞行器的设计非常感兴趣,但有尾的配置通常是受欢迎的,因为它们提供了许多好处,如静态稳定性和更简单的控制策略,分离机翼和尾部控制。然而,由于非定常机翼尾流和尾部之间的相互作用,尾部空气动力学非常复杂,通常没有明确建模。我们提出了一种对扑翼尾流进行建模的方法,从而对扑翼机器人的尾部空气动力学进行建模。首先,尾流被建模为一个周期函数,取决于机翼襟翼的相位和相对于机翼的位置。尾流模型由六个低阶子模型组成,代表切向和垂直速度分量的平均值、振幅和相位。使用基于多元单纯形样条的识别方法,从立体粒子图像测速测量中估计每个子模型中的参数。计算的模型以高精度表示测量的尾流,在计算上是可管理的,并且适用于一系列不同的尾部几何形状。然后,在准稳态空气动力学模型中使用尾流模型,并结合自由流速度的影响,来估计尾部产生的力。研究结果为进一步的建模、模拟和设计工作提供了基础,并深入了解了扑翼飞行器中尾部的作用及其与机翼尾流的相互作用。研究发现,由于机翼尾流的影响,尾部看到的速度与自由流的速度大小相似,并且尾部在其翼展的50-70%时最有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle
Despite significant interest in tailless flapping-wing micro aerial vehicle designs, tailed configurations are often favoured, as they offer many benefits, such as static stability and a simpler control strategy, separating wing and tail control. However, the tail aerodynamics are highly complex due to the interaction between the unsteady wing wake and tail, which is generally not modelled explicitly. We propose an approach to model the flapping-wing wake and hence the tail aerodynamics of a tailed flapping-wing robot. First, the wake is modelled as a periodic function depending on wing flap phase and position with respect to the wings. The wake model is constructed out of six low-order sub-models representing the mean, amplitude and phase of the tangential and vertical velocity components. The parameters in each sub-model are estimated from stereo-particle image velocimetry measurements using an identification method based on multivariate simplex splines. The computed model represents the measured wake with high accuracy, is computationally manageable and is applicable to a range of different tail geometries. The wake model is then used within a quasi-steady aerodynamic model, and combined with the effect of free-stream velocity, to estimate the forces produced by the tail. The results provide a basis for further modelling, simulation and design work, and yield insight into the role of the tail and its interaction with the wing wake in flapping-wing vehicles. It was found that due to the effect of the wing wake, the velocity seen by the tail is of a similar magnitude as the free stream and that the tail is most effective at 50–70% of its span.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信