量子码不能提高各向同性误差的保真度

J. Lacalle, L. M. Pozo-Coronado, André Luiz Fonseca de Oliveira, Rafael Martín-Cuevas
{"title":"量子码不能提高各向同性误差的保真度","authors":"J. Lacalle, L. M. Pozo-Coronado, André Luiz Fonseca de Oliveira, Rafael Martín-Cuevas","doi":"10.4236/jamp.2023.112034","DOIUrl":null,"url":null,"abstract":"Given an $m-$qubit $\\Phi_0$ and an $(n,m)-$quantum code $\\mathcal{C}$, let $\\Phi$ be the $n-$qubit that results from the $\\mathcal{C}-$encoding of $\\Phi_0$. Suppose that the state $\\Phi$ is affected by an isotropic error (decoherence), becoming $\\Psi$, and that the corrector circuit of $\\mathcal{C}$ is applied to $\\Psi$, obtaining the quantum state $\\tilde\\Phi$. Alternatively, we analyze the effect of the isotropic error without using the quantum code $\\mathcal{C}$. In this case the error transforms $\\Phi_0$ into $\\Psi_0$. Assuming that the correction circuit does not introduce new errors and that it does not increase the execution time, we compare the fidelity of $\\Psi$, $\\tilde\\Phi$ and $\\Psi_0$ with the aim of analyzing the power of quantum codes to control isotropic errors. We prove that $F(\\Psi_0) \\geq F(\\tilde\\Phi) \\geq F(\\Psi)$. Therefore the best option to optimize fidelity against isotropic errors is not to use quantum codes.","PeriodicalId":56629,"journal":{"name":"应用数学与应用物理(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Codes Do Not Increase Fidelity against Isotropic Errors\",\"authors\":\"J. Lacalle, L. M. Pozo-Coronado, André Luiz Fonseca de Oliveira, Rafael Martín-Cuevas\",\"doi\":\"10.4236/jamp.2023.112034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an $m-$qubit $\\\\Phi_0$ and an $(n,m)-$quantum code $\\\\mathcal{C}$, let $\\\\Phi$ be the $n-$qubit that results from the $\\\\mathcal{C}-$encoding of $\\\\Phi_0$. Suppose that the state $\\\\Phi$ is affected by an isotropic error (decoherence), becoming $\\\\Psi$, and that the corrector circuit of $\\\\mathcal{C}$ is applied to $\\\\Psi$, obtaining the quantum state $\\\\tilde\\\\Phi$. Alternatively, we analyze the effect of the isotropic error without using the quantum code $\\\\mathcal{C}$. In this case the error transforms $\\\\Phi_0$ into $\\\\Psi_0$. Assuming that the correction circuit does not introduce new errors and that it does not increase the execution time, we compare the fidelity of $\\\\Psi$, $\\\\tilde\\\\Phi$ and $\\\\Psi_0$ with the aim of analyzing the power of quantum codes to control isotropic errors. We prove that $F(\\\\Psi_0) \\\\geq F(\\\\tilde\\\\Phi) \\\\geq F(\\\\Psi)$. Therefore the best option to optimize fidelity against isotropic errors is not to use quantum codes.\",\"PeriodicalId\":56629,\"journal\":{\"name\":\"应用数学与应用物理(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学与应用物理(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.112034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学与应用物理(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jamp.2023.112034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个$m-$量子比特$\Phi_0$和一个$(n,m)-$量子代码$\mathcal{C}$,设$\Phi$为$\Phi_0$编码的$\mathcal{C}-$产生的$n-$量子比特。假设状态$\Phi$受到各向同性误差(退相干)的影响,变成$\Psi$,将$\mathcal{C}$的校正电路应用于$\Psi$,得到量子态$\tilde\Phi$。或者,我们在不使用量子码$\mathcal{C}$的情况下分析各向同性误差的影响。在本例中,错误将$\Phi_0$转换为$\Psi_0$。假设校正电路不引入新的误差和不增加执行时间,我们比较了$\Psi$、$\tilde\Phi$和$\Psi_0$的保真度,目的是分析量子码控制各向同性误差的能力。我们证明$F(\Psi_0) \geq F(\tilde\Phi) \geq F(\Psi)$。因此,针对各向同性误差优化保真度的最佳选择是不使用量子编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Codes Do Not Increase Fidelity against Isotropic Errors
Given an $m-$qubit $\Phi_0$ and an $(n,m)-$quantum code $\mathcal{C}$, let $\Phi$ be the $n-$qubit that results from the $\mathcal{C}-$encoding of $\Phi_0$. Suppose that the state $\Phi$ is affected by an isotropic error (decoherence), becoming $\Psi$, and that the corrector circuit of $\mathcal{C}$ is applied to $\Psi$, obtaining the quantum state $\tilde\Phi$. Alternatively, we analyze the effect of the isotropic error without using the quantum code $\mathcal{C}$. In this case the error transforms $\Phi_0$ into $\Psi_0$. Assuming that the correction circuit does not introduce new errors and that it does not increase the execution time, we compare the fidelity of $\Psi$, $\tilde\Phi$ and $\Psi_0$ with the aim of analyzing the power of quantum codes to control isotropic errors. We prove that $F(\Psi_0) \geq F(\tilde\Phi) \geq F(\Psi)$. Therefore the best option to optimize fidelity against isotropic errors is not to use quantum codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1309
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信