{"title":"无界区域上分数阶Brezis-Nirenberg型问题的存在性结果","authors":"Yansheng Shen, Xumin Wang","doi":"10.12775/tmna.2022.009","DOIUrl":null,"url":null,"abstract":"In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains\n\\begin{align*}\n\\begin{cases}\n(-\\Delta)^{s}u-\\mu\\dfrac{u}{|x|^{2s}}=\\lambda u+|u|^{2^{\\ast}_{s}-2}u\n & \\text{in } \\Omega,\\\\\n u=0 & \\text{in } \\mathbb{R}^{N}\\setminus \\Omega,\n\\end{cases}\n\\end{align*}\nwhere $(-\\Delta)^{s}$ is the fractional Laplace operator with $s\\in(0,1)$,\n$\\mu\\in[0,\\Lambda_{N,s})$ with $\\Lambda_{N,s}$ the best fractional Hardy constant, $\\lambda> 0$, $N> 2s$ and $2^{\\ast}_{s}={2N}/({N-2s})$\ndenotes the fractional critical Sobolev exponent. By applying the fractional\nPoincaré inequality together with the concentration-compactness principle\nfor fractional Sobolev spaces in unbounded domains, we prove an existence\nresult to the equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for fractional Brezis-Nirenberg type problems in unbounded domains\",\"authors\":\"Yansheng Shen, Xumin Wang\",\"doi\":\"10.12775/tmna.2022.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains\\n\\\\begin{align*}\\n\\\\begin{cases}\\n(-\\\\Delta)^{s}u-\\\\mu\\\\dfrac{u}{|x|^{2s}}=\\\\lambda u+|u|^{2^{\\\\ast}_{s}-2}u\\n & \\\\text{in } \\\\Omega,\\\\\\\\\\n u=0 & \\\\text{in } \\\\mathbb{R}^{N}\\\\setminus \\\\Omega,\\n\\\\end{cases}\\n\\\\end{align*}\\nwhere $(-\\\\Delta)^{s}$ is the fractional Laplace operator with $s\\\\in(0,1)$,\\n$\\\\mu\\\\in[0,\\\\Lambda_{N,s})$ with $\\\\Lambda_{N,s}$ the best fractional Hardy constant, $\\\\lambda> 0$, $N> 2s$ and $2^{\\\\ast}_{s}={2N}/({N-2s})$\\ndenotes the fractional critical Sobolev exponent. By applying the fractional\\nPoincaré inequality together with the concentration-compactness principle\\nfor fractional Sobolev spaces in unbounded domains, we prove an existence\\nresult to the equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了无界圆柱型域中的分数阶Brezis-Nirenberg型问题^{s}u-\mu\dfrac{u}{|x|^{2s}}=λu+| u | ^{2^{\ast}_{s}-2}u&&\text{in}\Omega,\\u=0&&\text{in}\mathbb{R}^{N}\setminus\Omega、\end{cases}\end{align*},其中$(-\Delta)^{s}$是具有$s\in(0,1)$的分数拉普拉斯算子,$\mu\in[0],\Lambda_{N,s})$,其中$\Lambda_{N,s}$是最佳分式Hardy常数,$\Lambda>0$,$N>2s$和$2^{\sast}_{s}={2N}/({N-2s})$$表示分数临界Sobolev指数。
Existence results for fractional Brezis-Nirenberg type problems in unbounded domains
In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains
\begin{align*}
\begin{cases}
(-\Delta)^{s}u-\mu\dfrac{u}{|x|^{2s}}=\lambda u+|u|^{2^{\ast}_{s}-2}u
& \text{in } \Omega,\\
u=0 & \text{in } \mathbb{R}^{N}\setminus \Omega,
\end{cases}
\end{align*}
where $(-\Delta)^{s}$ is the fractional Laplace operator with $s\in(0,1)$,
$\mu\in[0,\Lambda_{N,s})$ with $\Lambda_{N,s}$ the best fractional Hardy constant, $\lambda> 0$, $N> 2s$ and $2^{\ast}_{s}={2N}/({N-2s})$
denotes the fractional critical Sobolev exponent. By applying the fractional
Poincaré inequality together with the concentration-compactness principle
for fractional Sobolev spaces in unbounded domains, we prove an existence
result to the equation.