分圆场某些子场的迹形式及其应用

Q3 Mathematics
A. J. Ferrari, A. A. Andrade, R. R. Araujo, J. Interlando
{"title":"分圆场某些子场的迹形式及其应用","authors":"A. J. Ferrari, A. A. Andrade, R. R. Araujo, J. Interlando","doi":"10.13069/jacodesmath.729440","DOIUrl":null,"url":null,"abstract":"In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained lattices are rotated versions of the lattices Λ9,Λ10\\Lambda_9, \\Lambda_{10}Λ​9​​,Λ​10​​ and Λ11\\Lambda_{11}Λ​11​​ and they are images of Z\\mathbb{Z}Z-submodules of rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are new in the literature. We also obtain algebraic lattices in odd dimensions up to 777 over real subfields, calculate their minimum product distance and compare with those known in literatura, since lattices constructed over real subfields have full diversity.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace forms of certain subfields of cyclotomic fields and applications\",\"authors\":\"A. J. Ferrari, A. A. Andrade, R. R. Araujo, J. Interlando\",\"doi\":\"10.13069/jacodesmath.729440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained lattices are rotated versions of the lattices Λ9,Λ10\\\\Lambda_9, \\\\Lambda_{10}Λ​9​​,Λ​10​​ and Λ11\\\\Lambda_{11}Λ​11​​ and they are images of Z\\\\mathbb{Z}Z-submodules of rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are new in the literature. We also obtain algebraic lattices in odd dimensions up to 777 over real subfields, calculate their minimum product distance and compare with those known in literatura, since lattices constructed over real subfields have full diversity.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/jacodesmath.729440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.729440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了环切分场的极大实子域的显式迹形式,作为在欧几里德空间中构造具有最优中心密度的代数格的工具。我们还得到了由这些子域得到的代数格的格伦矩阵的一个封闭公式。所得到的格是格Λ9,Λ10\Lambda_9, \Lambda_{10}Λ 9,Λ10和Λ11\Lambda_{11}Λ 11的旋转版本,它们是整数环在扭曲同态下的Z\mathbb{Z}Z子模的像,这些结构作为代数格在文献中是新的。由于在实子域上构造的格具有完全的多样性,我们还得到了实子域上奇维数不超过777的代数格,计算了它们的最小积距离,并与文献中已知的代数格进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace forms of certain subfields of cyclotomic fields and applications
In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained lattices are rotated versions of the lattices Λ9,Λ10\Lambda_9, \Lambda_{10}Λ​9​​,Λ​10​​ and Λ11\Lambda_{11}Λ​11​​ and they are images of Z\mathbb{Z}Z-submodules of rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are new in the literature. We also obtain algebraic lattices in odd dimensions up to 777 over real subfields, calculate their minimum product distance and compare with those known in literatura, since lattices constructed over real subfields have full diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信