基于铁氧体材料的偏振无关四端口光波导环行器的设计、仿真与优化

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Babak Hashemi, A. Alizadeh
{"title":"基于铁氧体材料的偏振无关四端口光波导环行器的设计、仿真与优化","authors":"Babak Hashemi, A. Alizadeh","doi":"10.1155/2022/4381341","DOIUrl":null,"url":null,"abstract":"Optical circulators are used in optical devices such as multiplexers, demultiplexers, and optical routers. Usually, the magnetic material in the center of the circulator conducts light by interacting with the electromagnetic wave. In this research, a polarization-independent four-port optical waveguide circulator with the presence of a rhombus-shaped ferrimagnetic material has been designed, simulated, and optimized in the three-dimensional part of Comsol software. This designed circulator unlike the previous structures has four ports which use the transmission matrix method to conduct waves. By selecting the appropriate size and type of central ferrite, as well as the scale of input and output channels, the most optimal situation is obtained for power transmission with less than 1 dB loss when port 1 is input and port 2 is output.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design, Simulation, and Optimization of Polarization-Independent Four-Port Optical Waveguide Circulator Based on a Ferrite Material\",\"authors\":\"Babak Hashemi, A. Alizadeh\",\"doi\":\"10.1155/2022/4381341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical circulators are used in optical devices such as multiplexers, demultiplexers, and optical routers. Usually, the magnetic material in the center of the circulator conducts light by interacting with the electromagnetic wave. In this research, a polarization-independent four-port optical waveguide circulator with the presence of a rhombus-shaped ferrimagnetic material has been designed, simulated, and optimized in the three-dimensional part of Comsol software. This designed circulator unlike the previous structures has four ports which use the transmission matrix method to conduct waves. By selecting the appropriate size and type of central ferrite, as well as the scale of input and output channels, the most optimal situation is obtained for power transmission with less than 1 dB loss when port 1 is input and port 2 is output.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4381341\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/4381341","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

光环行器用于光学设备,如多路复用器、多路分解器和光学路由器。通常,循环器中心的磁性材料通过与电磁波相互作用来传导光。在本研究中,在Comsol软件的三维部分中,设计、模拟和优化了一种具有菱形铁磁性材料的偏振无关四端口光波导环行器。与以前的结构不同,这种设计的循环器有四个端口,它们使用传输矩阵方法来传导波。通过选择合适的中心铁氧体尺寸和类型,以及输入和输出通道的规模,可以获得小于1的功率传输的最佳情况 当端口1被输入而端口2被输出时的dB损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Simulation, and Optimization of Polarization-Independent Four-Port Optical Waveguide Circulator Based on a Ferrite Material
Optical circulators are used in optical devices such as multiplexers, demultiplexers, and optical routers. Usually, the magnetic material in the center of the circulator conducts light by interacting with the electromagnetic wave. In this research, a polarization-independent four-port optical waveguide circulator with the presence of a rhombus-shaped ferrimagnetic material has been designed, simulated, and optimized in the three-dimensional part of Comsol software. This designed circulator unlike the previous structures has four ports which use the transmission matrix method to conduct waves. By selecting the appropriate size and type of central ferrite, as well as the scale of input and output channels, the most optimal situation is obtained for power transmission with less than 1 dB loss when port 1 is input and port 2 is output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信