{"title":"反宇称时间对称扩散系统异常点的拉比振荡","authors":"Gabriel González Contreras","doi":"10.31349/revmexfis.69.040501","DOIUrl":null,"url":null,"abstract":"The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rabi oscillations at the exceptional point in anti-parity-time symmetric diffusive systems\",\"authors\":\"Gabriel González Contreras\",\"doi\":\"10.31349/revmexfis.69.040501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\\\\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\\\\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.040501\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.040501","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Rabi oscillations at the exceptional point in anti-parity-time symmetric diffusive systems
The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).