用不动点法逼近一种先进的多维往复式二次映射

IF 0.4 Q4 MATHEMATICS
B. S. Senthil Kumar, H. Dutta, S. Sabarinathan
{"title":"用不动点法逼近一种先进的多维往复式二次映射","authors":"B. S. Senthil Kumar, H. Dutta, S. Sabarinathan","doi":"10.5269/bspm.62943","DOIUrl":null,"url":null,"abstract":"There are many results on stability of various forms of functional equations available in the theory of functional equations. The intention of this paper is to introduce an advanced and a new multi-dimensional reciprocal-quadratic functional equation involving $p>1$ variables. It is interesting to note that it has two different solutions, namely, quadratic and multiplicative inverse quadratic functions. We solve its various stability problems in the setting of non-zero real numbers and non-Archimedean fields via fixed point approach.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating an advanced multi-dimensional reciprocal-quadratic mapping via a fixed point approach\",\"authors\":\"B. S. Senthil Kumar, H. Dutta, S. Sabarinathan\",\"doi\":\"10.5269/bspm.62943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many results on stability of various forms of functional equations available in the theory of functional equations. The intention of this paper is to introduce an advanced and a new multi-dimensional reciprocal-quadratic functional equation involving $p>1$ variables. It is interesting to note that it has two different solutions, namely, quadratic and multiplicative inverse quadratic functions. We solve its various stability problems in the setting of non-zero real numbers and non-Archimedean fields via fixed point approach.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.62943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在函数方程理论中,有许多关于各种形式的函数方程稳定性的结果。本文的目的是介绍一个先进的和新的多维倒数二次函数方程,涉及$p>1$个变量。值得注意的是,它有两种不同的解,即二次函数和乘性反二次函数。我们用不动点方法解决了它在非零实数和非阿基米德场设置下的各种稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating an advanced multi-dimensional reciprocal-quadratic mapping via a fixed point approach
There are many results on stability of various forms of functional equations available in the theory of functional equations. The intention of this paper is to introduce an advanced and a new multi-dimensional reciprocal-quadratic functional equation involving $p>1$ variables. It is interesting to note that it has two different solutions, namely, quadratic and multiplicative inverse quadratic functions. We solve its various stability problems in the setting of non-zero real numbers and non-Archimedean fields via fixed point approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信