{"title":"模空间$\\mathcal M_{0,n+3}$上的遗忘映射诱导有理曲线的$(n+3)$-网","authors":"Luc Pirio","doi":"10.4064/dm866-2-2023","DOIUrl":null,"url":null,"abstract":"We discuss the curvilinear web $\\boldsymbol{\\mathcal W}_{0,n+3}$ on the moduli space $\\mathcal M_{0,n+3}$ of projective configurations of $n+3$ points on $\\mathbf P^1$ defined by the $n+3$ forgetful maps $\\mathcal M_{0,n+3}\\rightarrow \\mathcal M_{0,n+2}$. We recall classical results which show that this web is linearizable when $n$ is odd, or is equivalent to a web by conics when $n$ is even. We then turn to the abelian relations (ARs) of these webs. After recalling the well-known case when $n=2$ (related to the 5-terms functional identity of the dilogarithm), we focus on the case of the 6-web $\\boldsymbol{\\mathcal W}_{{0,6}}$. We show that this web is isomorphic to the web formed by the lines contained in Segre's cubic primal $\\boldsymbol{S}\\subset \\mathbf P^4$ and that a kind of `Abel's theorem' allows to describe the ARs of $\\boldsymbol{\\mathcal W}_{{0,6}}$ by means of the abelian 2-forms on the Fano surface $F_1(\\boldsymbol{S})\\subset G_1(\\mathbf P^4)$ of lines contained in $\\boldsymbol{S}$. We deduce from this that $\\boldsymbol{\\mathcal W}_{{0,6}}$ has maximal rank with all its ARs rational, and that these span a space which is an irreducible $\\mathfrak S_6$-module. Then we take up an approach due to Damiano that we correct in the case when $n$ is odd: it leads to an abstract description of the space of ARs of $\\boldsymbol{\\mathcal W}_{0,n+3}$ as a $\\mathfrak S_{n+3}$-representation. In particular, we obtain that this web has maximal rank for any $n\\geq 2$. Finally, we consider `Euler's abelian relation $\\boldsymbol{\\mathcal E}_n$', a particular AR for $\\boldsymbol{\\mathcal W}_{0,n+3}$ constructed by Damiano from a characteristic class on the grassmannian of 2-planes in $\\mathbf R^{n+3}$ by means of Gelfand-MacPherson theory of polylogarithmic forms. We give an explicit conjectural formula for the components of $\\boldsymbol{\\mathcal E}_n$ that we prove to be correct for $n\\leq 12$.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the $(n+3)$-webs by rational curves induced by the forgetful maps on the moduli spaces $\\\\mathcal M_{0,n+3}$\",\"authors\":\"Luc Pirio\",\"doi\":\"10.4064/dm866-2-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the curvilinear web $\\\\boldsymbol{\\\\mathcal W}_{0,n+3}$ on the moduli space $\\\\mathcal M_{0,n+3}$ of projective configurations of $n+3$ points on $\\\\mathbf P^1$ defined by the $n+3$ forgetful maps $\\\\mathcal M_{0,n+3}\\\\rightarrow \\\\mathcal M_{0,n+2}$. We recall classical results which show that this web is linearizable when $n$ is odd, or is equivalent to a web by conics when $n$ is even. We then turn to the abelian relations (ARs) of these webs. After recalling the well-known case when $n=2$ (related to the 5-terms functional identity of the dilogarithm), we focus on the case of the 6-web $\\\\boldsymbol{\\\\mathcal W}_{{0,6}}$. We show that this web is isomorphic to the web formed by the lines contained in Segre's cubic primal $\\\\boldsymbol{S}\\\\subset \\\\mathbf P^4$ and that a kind of `Abel's theorem' allows to describe the ARs of $\\\\boldsymbol{\\\\mathcal W}_{{0,6}}$ by means of the abelian 2-forms on the Fano surface $F_1(\\\\boldsymbol{S})\\\\subset G_1(\\\\mathbf P^4)$ of lines contained in $\\\\boldsymbol{S}$. We deduce from this that $\\\\boldsymbol{\\\\mathcal W}_{{0,6}}$ has maximal rank with all its ARs rational, and that these span a space which is an irreducible $\\\\mathfrak S_6$-module. Then we take up an approach due to Damiano that we correct in the case when $n$ is odd: it leads to an abstract description of the space of ARs of $\\\\boldsymbol{\\\\mathcal W}_{0,n+3}$ as a $\\\\mathfrak S_{n+3}$-representation. In particular, we obtain that this web has maximal rank for any $n\\\\geq 2$. Finally, we consider `Euler's abelian relation $\\\\boldsymbol{\\\\mathcal E}_n$', a particular AR for $\\\\boldsymbol{\\\\mathcal W}_{0,n+3}$ constructed by Damiano from a characteristic class on the grassmannian of 2-planes in $\\\\mathbf R^{n+3}$ by means of Gelfand-MacPherson theory of polylogarithmic forms. We give an explicit conjectural formula for the components of $\\\\boldsymbol{\\\\mathcal E}_n$ that we prove to be correct for $n\\\\leq 12$.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm866-2-2023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm866-2-2023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the $(n+3)$-webs by rational curves induced by the forgetful maps on the moduli spaces $\mathcal M_{0,n+3}$
We discuss the curvilinear web $\boldsymbol{\mathcal W}_{0,n+3}$ on the moduli space $\mathcal M_{0,n+3}$ of projective configurations of $n+3$ points on $\mathbf P^1$ defined by the $n+3$ forgetful maps $\mathcal M_{0,n+3}\rightarrow \mathcal M_{0,n+2}$. We recall classical results which show that this web is linearizable when $n$ is odd, or is equivalent to a web by conics when $n$ is even. We then turn to the abelian relations (ARs) of these webs. After recalling the well-known case when $n=2$ (related to the 5-terms functional identity of the dilogarithm), we focus on the case of the 6-web $\boldsymbol{\mathcal W}_{{0,6}}$. We show that this web is isomorphic to the web formed by the lines contained in Segre's cubic primal $\boldsymbol{S}\subset \mathbf P^4$ and that a kind of `Abel's theorem' allows to describe the ARs of $\boldsymbol{\mathcal W}_{{0,6}}$ by means of the abelian 2-forms on the Fano surface $F_1(\boldsymbol{S})\subset G_1(\mathbf P^4)$ of lines contained in $\boldsymbol{S}$. We deduce from this that $\boldsymbol{\mathcal W}_{{0,6}}$ has maximal rank with all its ARs rational, and that these span a space which is an irreducible $\mathfrak S_6$-module. Then we take up an approach due to Damiano that we correct in the case when $n$ is odd: it leads to an abstract description of the space of ARs of $\boldsymbol{\mathcal W}_{0,n+3}$ as a $\mathfrak S_{n+3}$-representation. In particular, we obtain that this web has maximal rank for any $n\geq 2$. Finally, we consider `Euler's abelian relation $\boldsymbol{\mathcal E}_n$', a particular AR for $\boldsymbol{\mathcal W}_{0,n+3}$ constructed by Damiano from a characteristic class on the grassmannian of 2-planes in $\mathbf R^{n+3}$ by means of Gelfand-MacPherson theory of polylogarithmic forms. We give an explicit conjectural formula for the components of $\boldsymbol{\mathcal E}_n$ that we prove to be correct for $n\leq 12$.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.