M. Changat, Prasanth G. Narasimha-Shenoi, Ferdoos Hossein Nezhad, M. Kovse, S. Mohandas, Abisha Ramachandran, P. Stadler
{"title":"两点渡线的转接组","authors":"M. Changat, Prasanth G. Narasimha-Shenoi, Ferdoos Hossein Nezhad, M. Kovse, S. Mohandas, Abisha Ramachandran, P. Stadler","doi":"10.26493/2590-9770.1356.D19","DOIUrl":null,"url":null,"abstract":"Genetic Algorithms typically invoke crossover operators to two parents. The transit set R k ( x, y ) comprises all offsprings of this form. It forms the tope set of an uniform oriented matroid with Vapnik-Chervonenkis dimension k + 1 . The Topological Representation Theorem for oriented matroids thus implies a representation in terms of pseudosphere arrangements. This makes it possible to study 2 -point crossover in detail and to characterize the partial cubes defined by the transit sets of two-point crossover.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transit sets of two-point crossover\",\"authors\":\"M. Changat, Prasanth G. Narasimha-Shenoi, Ferdoos Hossein Nezhad, M. Kovse, S. Mohandas, Abisha Ramachandran, P. Stadler\",\"doi\":\"10.26493/2590-9770.1356.D19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic Algorithms typically invoke crossover operators to two parents. The transit set R k ( x, y ) comprises all offsprings of this form. It forms the tope set of an uniform oriented matroid with Vapnik-Chervonenkis dimension k + 1 . The Topological Representation Theorem for oriented matroids thus implies a representation in terms of pseudosphere arrangements. This makes it possible to study 2 -point crossover in detail and to characterize the partial cubes defined by the transit sets of two-point crossover.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1356.D19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1356.D19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Genetic Algorithms typically invoke crossover operators to two parents. The transit set R k ( x, y ) comprises all offsprings of this form. It forms the tope set of an uniform oriented matroid with Vapnik-Chervonenkis dimension k + 1 . The Topological Representation Theorem for oriented matroids thus implies a representation in terms of pseudosphere arrangements. This makes it possible to study 2 -point crossover in detail and to characterize the partial cubes defined by the transit sets of two-point crossover.