Andrés Chirre , Markus Valås Hagen , Aleksander Simonič
{"title":"狄利克雷l函数的对数导数的条件估计","authors":"Andrés Chirre , Markus Valås Hagen , Aleksander Simonič","doi":"10.1016/j.indag.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the </span><span><math><mi>q</mi></math></span><span>-aspect for the logarithmic derivative </span><span><math><mrow><mfenced><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><mi>L</mi></mrow></mfenced><mfenced><mrow><mi>σ</mi><mo>,</mo><mi>χ</mi></mrow></mfenced></mrow></math></span> of Dirichlet <span><math><mi>L</mi></math></span>-functions, where <span><math><mi>χ</mi></math></span><span> is a primitive character modulo </span><span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>30</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi><mo>≤</mo><mi>σ</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi></mrow></math></span>. In addition, for <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 14-27"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conditional estimates for the logarithmic derivative of Dirichlet L-functions\",\"authors\":\"Andrés Chirre , Markus Valås Hagen , Aleksander Simonič\",\"doi\":\"10.1016/j.indag.2023.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the </span><span><math><mi>q</mi></math></span><span>-aspect for the logarithmic derivative </span><span><math><mrow><mfenced><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><mi>L</mi></mrow></mfenced><mfenced><mrow><mi>σ</mi><mo>,</mo><mi>χ</mi></mrow></mfenced></mrow></math></span> of Dirichlet <span><math><mi>L</mi></math></span>-functions, where <span><math><mi>χ</mi></math></span><span> is a primitive character modulo </span><span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>30</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi><mo>≤</mo><mi>σ</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi></mrow></math></span>. In addition, for <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 1\",\"pages\":\"Pages 14-27\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000691\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000691","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conditional estimates for the logarithmic derivative of Dirichlet L-functions
Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the -aspect for the logarithmic derivative of Dirichlet -functions, where is a primitive character modulo and . In addition, for we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.